Abstract

Achieving accurate robot control and realistic robot simulation relies on the precise modeling of robotic dynamics. Although the identification method for obtaining dynamic parameters has been developed for several years, joint inconsistency has largely been disregarded in prior studies. The inconsistency of joint actuators results in varying confidence levels of their measurement results, leading to the departure of the final identification parameters from valid values, thereby impacting the control performance. This paper presents a novel identification method that effectively addresses the issue of joint inconsistency by assigning distinct weights to each joint. The presented approach extends the least square (LS) method and incorporates the particle swarm optimization (PSO) algorithm to calculate the weights of each individual joint. This approach is referred to as PSO-based weighted least square (PWLS). Simulation experiments demonstrated the superior identification accuracy of the PWLS method compared to the LS method in a robot system characterized by joint inconsistency. Moreover, the experiments were performed on a three degrees-of-freedom (DOFs) robotic limb, which exhibited improved identification performance in both the excitation and verification trajectories. These findings have promising implications for enhancing the control and simulation of robotic systems.

References

1.
Gao
,
J.
,
Kang
,
E.
,
He
,
W.
, and
Qiao
,
H.
,
2022
, “
Adaptive Model-Based Dynamic Event-Triggered Output Feedback Control of a Robotic Manipulator With Disturbance
,”
ISA Trans.
,
122
, pp.
63
78
.10.1016/j.isatra.2021.04.023
2.
Di Carlo
,
J.
,
Wensing
,
P. M.
,
Katz
,
B.
,
Bledt
, G.
, and
Kim
, S.
,
2018
, “
Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control
,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Madrid, Spain, Oct. 1–5, pp. 1–9.10.1109/IROS.2018.8594448
3.
Rone
,
W. S.
,
Saab
,
W.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Controller Design, Analysis, and Experimental Validation of a Robotic Serpentine Tail to Maneuver and Stabilize a Quadrupedal Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
8
), p.
081002
.10.1115/1.4042948
4.
Qin
,
Z.
,
Baron
,
L.
, and
Birglen
,
L.
,
2010
, “
A New Approach to the Dynamic Parameter Identification of Robotic Manipulators
,”
Robotica
,
28
(
4
), pp.
539
547
.10.1017/S0263574709990233
5.
Atkeson
,
C. G.
,
An
,
C. H.
, and
Hollerbach
,
J. M.
,
1986
, “
Estimation of Inertial Parameters of Manipulator Loads and Links
,”
Int. J. Rob. Res.
,
5
(
3
), pp.
101
119
.10.1177/027836498600500306
6.
Armstrong
,
B.
,
1989
, “
On Finding Exciting Trajectories for Identification Experiments Involving Systems With Nonlinear Dynamics
,”
Int. J. Rob. Res.
,
8
(
6
), pp.
28
48
.10.1177/027836498900800603
7.
Swevers
,
J.
,
Ganseman
,
C.
,
De Schutter
,
J.
, and
Van Brussel
,
H.
,
1996
, “
Experimental Robot Identification Using Optimised Periodic Trajectories
,”
Mech. Syst. Signal Process.
,
10
(
5
), pp.
561
577
.10.1006/mssp.1996.0039
8.
Ayusawa
,
K.
,
Venture
,
G.
, and
Nakamura
,
Y.
,
2014
, “
Identifiability and Identification of Inertial Parameters Using the Underactuated Base-Link Dynamics for Legged Multibody Systems
,”
Int. J. Rob. Res.
,
33
(
3
), pp.
446
468
.10.1177/0278364913495932
9.
Ayusawa
,
K.
,
Venture
,
G.
, and
Nakamura
,
Y.
,
2008
, “
Identification of Humanoid Robots Dynamics Using Floating-Base Motion Dynamics
,”
Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp. 2854–2859.10.1109/IROS.2008.4650614
10.
Wensing
,
P. M.
,
Kim
,
S.
, and
Slotine
,
J.-J. E.
,
2018
, “
Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
60
67
.10.1109/LRA.2017.2729659
11.
Jin
,
H.
,
Liu
,
Z.
,
Zhang
,
H.
,
Liu
,
Y.
, and
Zhao
,
J.
,
2018
, “
A Dynamic Parameter Identification Method for Flexible Joints Based on Adaptive Control
,”
IEEE/ASME Trans. Mechatron.
,
23
(
6
), pp.
2896
2908
.10.1109/TMECH.2018.2873232
12.
Huang
,
Y.
,
Ke
,
J.
,
Zhang
,
X.
, and
Ota
,
J.
,
2023
, “
Dynamic Parameter Identification of Serial Robots Using a Hybrid Approach
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1607
1621
.10.1109/TRO.2022.3211194
13.
Ge
,
W.
,
Wang
,
B.
, and
Mu
,
H.
,
2019
, “
Dynamic Parameter Identification for Reconfigurable Robot Using Adaline Neural Network,”
2019 IEEE International Conference on Mechatronics and Automation (
ICMA
), Tianjin, China, Aug. 4–7, pp. 319–324.10.1109/ICMA.2019.8816533
14.
Wang
,
S.
,
Shao
,
X.
,
Yang
,
L.
, and
Liu
,
N.
,
2020
, “
Deep Learning Aided Dynamic Parameter Identification of 6-DOF Robot Manipulators
,”
IEEE Access
,
8
, pp.
138102
138116
.10.1109/ACCESS.2020.3012196
15.
Christidi-Loumpasefski
,
O.-O.
, and
Papadopoulos
,
E.
,
2023
, “
On the Parameter Identification of Free-Flying Space Manipulator Systems
,”
Rob. Auton. Syst.
,
160
, p.
104310
.10.1016/j.robot.2022.104310
16.
Abedinifar
,
M.
,
Ertugrul
,
S.
, and
Arguz
,
S. H.
,
2023
, “
Nonlinear Model Identification and Statistical Verification Using Experimental Data With a Case Study of the UR5 Manipulator Joint Parameters
,”
Robotica
,
41
(
4
), pp.
1348
1370
.10.1017/S0263574722001783
17.
Wensing
,
P. M.
,
Wang
,
A.
,
Seok
,
S.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2017
, “
Proprioceptive Actuator Design in the Mit Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
509
522
.10.1109/TRO.2016.2640183
18.
Hubicki
,
C.
,
Grimes
,
J.
,
Jones
,
M.
,
Renjewski
,
D.
,
Spröwitz
,
A.
,
Abate
,
A.
, and
Hurst
,
J.
,
2016
, “
Atrias: Design and Validation of a Tether-Free 3d-Capable Spring-Mass Bipedal Robot
,”
Int. J. Rob. Res.
,
35
(
12
), pp.
1497
1521
.10.1177/0278364916648388
19.
Radkhah
,
K.
,
Kulic
,
D.
, and
Croft
,
E.
,
2007
, “
Dynamic Parameter Identification for the CRS A460 Robot
,”
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Diego, CA, Oct. 29–Nov. 2, pp. 3842–3847.10.1109/IROS.2007.4399314
20.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L., and Oriolo, G.
,
2010
,
Robotics: Modelling, Planning and Control
,
Springer, London
.
21.
Lischinsky
,
P.
,
Canudas-de-Wit
,
C.
, and
Morel
,
G.
,
1999
, “
Friction Compensation for an Industrial Hydraulic Robot
,”
IEEE Control Syst. Mag.
,
19
(
1
), pp.
25
32
.10.1109/37.745763
22.
Wu
,
W.-X.
,
Zhu
,
S.-Q.
, and
Jin
,
X.-L.
,
2013
, “
Dynamic Identification for Robot Manipulators Based on Modified Fourier Series
,”
J. Zhejiang Univ. (Eng. Sci.)
,
47
(
2
), pp.
231
237
.10.3785/j.issn.1008-973X.2013.02.006
23.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification and Control of Robots
,
Butterworth-Heinemann
, Oxford, UK.
24.
Gautier
,
M.
,
1991
, “
Numerical Calculation of the Base Inertial Parameters of Robots
,”
J. Rob. Syst.
,
8
(
4
), pp.
485
506
.10.1002/rob.4620080405
25.
Fisette
,
P.
,
Raucent
,
B. T.
, and
Samin
,
J.-C.
,
1996
, “
Minimal Dynamic Characterization of Tree-Like Multibody Systems
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
165
184
.10.1007/BF01833299
26.
Youdong
,
C. H. E. N.
, and
Lanxiao
,
H. U.
,
2020
, “
Identification Method of Payload Dynamic Parameters of Industrial Robot
,”
Robot
,
42
(
3
), pp.
325
335
.
27.
Sousa
,
C. D.
, and
Cortesao
,
R.
,
2014
, “
Physical Feasibility of Robot Base Inertial Parameter Identification: A Linear Matrix Inequality Approach
,”
Int. J. Rob. Res.
,
33
(
6
), pp.
931
944
.10.1177/0278364913514870
28.
Ruppert
,
D.
, and
Wand
,
M. P.
,
1994
, “
Multivariate Locally Weighted Least Squares Regression
,”
Ann. Stat.
,
22
(
3
), pp.
1346
1370
.10.1214/aos/1176325632
29.
Piepho
,
H.-P.
,
2019
, “
A Coefficient of Determination (R2) for Generalized Linear Mixed Models
,”
Biom. J.
,
61
(
4
), pp.
860
872
.10.1002/bimj.201800270
30.
Poli
,
R.
,
Kennedy
,
J.
, and
Blackwell
,
T.
,
2007
, “
Particle Swarm Optimization
,”
Swarm Intell.
,
1
(
1
), pp.
33
57
.10.1007/s11721-007-0002-0
31.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Proceedings of the Sixth International Symposium on Micro Machine and Human Science MHS'95, Nagoya, Japan, Oct. 4–6, pp. 39–43.
32.
Sengupta
,
S.
,
Basak
,
S.
, and
Peters
,
R. A.
,
2018
, “
Particle Swarm Optimization: A Survey of Historical and Recent Developments With Hybridization Perspectives
,”
Mach. Learn. Knowl. Extr.
,
1
(
1
), pp.
157
191
.10.3390/make1010010
33.
Swevers
,
J.
,
Ganseman
,
C.
,
Tukel
,
D. B.
,
de Schutter
,
J.
, and
Van Brussel
,
H.
,
1997
, “
Optimal Robot Excitation and Identification
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
730
740
.10.1109/70.631234
34.
Gautier
,
M.
, and
Khalil
,
W.
,
1992
, “
Exciting Trajectories for the Identification of Base Inertial Parameters of Robots
,”
Int. J. Rob. Res.
,
11
(
4
), pp.
362
375
.10.1177/027836499201100408
35.
Wu
,
W.
,
Zhu
,
S.
,
Wang
,
X.
, and
Liu
,
H.
,
2012
, “
Closed-Loop Dynamic Parameter Identification of Robot Manipulators Using Modified Fourier Series
,”
Int. J. Adv. Rob. Syst.
,
9
(
1
), p.
29
.10.5772/45818
36.
Zhu
,
Z.
,
Zhu
,
W.
,
Zhang
,
G.
,
Chen
,
T.
,
Li
,
Y.
,
Rong
,
X.
,
Song
,
R.
,
Qin
,
D.
,
Hua
,
Q.
, and
Ma
,
S.
,
2023
, “
Design and Control of BRAVER: A Bipedal Robot Actuated Via Proprioceptive Electric Motors
,”
Auton. Rob.
,
47
(
8
), pp.
1229
1243
.10.1007/s10514-023-10117-5
37.
Burns
,
J. A.
,
Cliff
,
E. M.
, and
Herdman
,
T. L.
,
2018
, “
Identification of Dynamical Systems With Structured Uncertainty
,”
Inverse Probl. Sci. Eng.
,
26
(
2
), pp.
280
321
.10.1080/17415977.2017.1316500
You do not currently have access to this content.