Abstract

This paper presents a computational study of an underwater kite operating in environments requiring tethers exceeding a kilometer in length, referred to herein as ultralong tether (ULT) applications. Leveraging a detailed dynamic model of the kite and tether, we study the relationship between path shape and tether drag at varying tether lengths in order to develop meaningful insights as to the operation of systems that require ultralong tethers in order to reach viable flow resources. An initial study of a ULT kite application operating in a uniform flow field is presented, demonstrating that with an appropriately designed flight path, the kite is able to suppress the motion of the majority of the tether in order to achieve an order of magnitude greater power output than can be achieved with a straight tether, which is the typical assumption used in a performance estimation. Tether drag mitigation is characterized through the use of a novel metric termed effective tether length, which characterizes the total length of tether engaged in drag production. It is shown that a high-performance path shape can reduce the effect of tether drag by over 50%. This performance is shown to be comparable to the multi-airborne wind energy system (MAWES) proposed by Leuthold et al. (2017, “Induction in Optimal Control of Multiple-Kite Airborne Wind Energy Systems,” IFAC-PapersOnLine, 50(1), pp. 153–158; 2018, “Operational Regions of a Multi-Kite Awe System,” 2018 European Control Conference (ECC), IEEE, Limassol, Cyprus, June 13–15, pp. 52–57), which suppresses tether motion through mechanical design rather than merely though careful path selection and control. This initial study in a uniform flow field is followed by two sensitivity studies: one that assesses performance in realistic environments where the flow magnitude is a function of altitude above the seabed and a second that assesses the impact of tether drag reduction techniques. It will be shown that by careful selection of path shape, site, and tether design, a single kite in a ULT marine application can achieve performance rivaling that of the MAWES without the extra required mechanical complexity.

References

1.
Muglia
,
M.
,
Seim
,
H.
, and
Taylor
,
P.
,
2020
, “
Gulf Stream Marine Hydrokinetic Energy off Cape Hatteras, North Carolina
,”
Mar. Technol. Soc. J.
,
54
(
6
), pp.
24
36
.10.4031/MTSJ.54.6.4
2.
Minesto
,
2019
, “
Minesto Website
,” accessed Apr. 7, 2022, https://minesto.com/
3.
Abney
,
A.
,
Reed
,
J.
,
Naik
,
K.
,
Bryant
,
S.
,
Herbert
,
D.
,
Leonard
,
Z.
,
Vadlamannati
,
A.
, et al.,
2022
, “
Autonomous Closed-Loop Experimental Characterization and Dynamic Model Validation of a Scaled Underwater Kite
,”
ASME J. Dyn. Syst., Meas., Contr.
,
144
(
7
), p.
071005
.10.1115/1.4054141
4.
Loyd
,
M.
,
1980
, “
Crosswind Kite Power
,”
J. Energy
,
4
(
3
), pp.
106
111
.10.2514/3.48021
5.
Houska
,
B.
, and
Diehl
,
M.
,
2007
, “
Optimal Control for Power Generating Kites
,” 2007 European Control Conference (
ECC
), Kos, Greece, July 2–5, pp.
3560
3567
.10.23919/ECC.2007.7068861
6.
van der Vlugt
,
R.
,
Bley
,
A.
,
Noom
,
M.
, and
Schmehl
,
R.
,
2019
, “
Quasi-Steady Model of a Pumping Kite Power System
,”
Renewable Energy
,
131
, pp.
83
99
.10.1016/j.renene.2018.07.023
7.
Leuthold
,
R.
,
Gros
,
S.
, and
Diehl
,
M.
,
2017
, “
Induction in Optimal Control of Multiple-Kite Airborne Wind Energy Systems
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
153
158
.10.1016/j.ifacol.2017.08.026
8.
Leuthold
,
R.
,
De Schutter
,
J.
,
Malz
,
E. C.
,
Licitra
,
G.
,
Gros
,
S.
, and
Diehl
,
M.
,
2018
, “
Operational Regions of a Multi-Kite Awe System
,” 2018 European Control Conference (
ECC
),
Limassol, Cyprus, June 12–15, pp.
52
57
.10.23919/ECC.2018.8550199
9.
Licitra
,
G.
,
Koenemann
,
J.
,
Horn
,
G.
,
Williams
,
P.
,
Ruiterkamp
,
R.
, and
Diehl
,
M.
,
2017
, “
Viability Assessment of a Rigid Wing Airborne Wind Energy Pumping System
,” 2017 21st International Conference on Process Control (
PC
),
Štrbské Pleso, Slovakia, June 6–9, pp.
452
458
.10.1109/PC.2017.7976256
10.
Reed
,
J.
,
Daniels
,
J.
,
Siddiqui
,
A.
,
Cobb
,
M.
, and
Vermillion
,
C.
,
2020
, “
Optimal Exploration and Charging for an Autonomous Underwater Vehicle With Energy-Harvesting Kite
,” 2020 American Control Conference (
ACC
),
Denver, CO, July 1–3, pp.
4134
4139
.10.23919/ACC45564.2020.9147746
11.
Cobb
,
M.
,
Barton
,
K.
,
Fathy
,
H.
, and
Vermillion
,
C.
,
2019
, “
An Iterative Learning Approach for Online Flight Path Optimization for Tethered Energy Systems Undergoing Cyclic Spooling Motion
,” 2019 American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
2164
2170
.10.23919/ACC.2019.8814773
12.
Cobb
,
M.
,
Reed
,
J.
,
Daniels
,
J.
,
Siddiqui
,
A.
,
Wu
,
M.
,
Fathy
,
H.
,
Barton
,
K.
, and
Vermillion
,
C.
, “
Iterative Learning-Based Path Optimization With Application to Marine Hydrokinetic Energy Systems
,”
IEEE Trans. Control Syst. Technol.
, 30(2), pp.
639
653
.10.1109/TCST.2021.3070526
13.
Rapp
,
S.
,
Schmehl
,
R.
,
Oland
,
E.
, and
Haas
,
T.
,
2019
, “
Cascaded Pumping Cycle Control for Rigid Wing Airborne Wind Energy Systems
,”
J. Guid., Control, Dyn.
,
42
(
11
), pp.
2456
2473
.10.2514/1.G004246
14.
Licitra
,
G.
,
Sieberling
,
S.
,
Engelen
,
S.
,
Williams
,
P.
,
Ruiterkamp
,
R.
, and
Diehl
,
M.
,
2016
, “
Optimal Control for Minimizing Power Consumption During Holding Patterns for Airborne Wind Energy Pumping System
,” 2016 European Control Conference (
ECC
),
Aalborg, Denmark, June 29–July 1, pp.
1574
1579
.10.1109/ECC.2016.7810515
15.
Shchepetkin
,
A. F.
, and
McWilliams
,
J. C.
,
2005
, “
The Regional Oceanic Modeling System (Roms): A Split-Explicit, Free-Surface, Topography-Following-Coordinate Oceanic Model
,”
Ocean Modell.
,
9
(
4
), pp.
347
404
.10.1016/j.ocemod.2004.08.002
16.
Cobb
,
M.
,
Deodhar
,
N.
, and
Vermillion
,
C.
,
2018
, “
Lab-Scale Experimental Characterization and Dynamic Scaling Assessment for Closed-Loop Crosswind Flight of Airborne Wind Energy Systems
,”
ASME J. Dyn. Syst., Meas., Contr.
,
140
(
7
), p.
071005
.10.1115/1.4038650
17.
Deese
,
J. T.
,
Muyimbwa
,
T.
,
Deodhar
,
N. A.
,
Vermillion
,
C. R.
, and
Tkacik
,
P.
,
2015
, “
Lab-Scale Characterization of a Lighter-Than-Air Wind Energy System-Closing the Loop
,”
AIAA
Paper No. 2015-3350. 10.2514/6.2015-3350
18.
Siddiqui
,
A.
,
Naik
,
K.
,
Cobb
,
M.
,
Granlund
,
K.
, and
Vermillion
,
C.
,
2020
, “
Lab-Scale, Closed-Loop Experimental Characterization, Model Refinement, and Validation of a Hydrokinetic Energy-Harvesting Ocean Kite
,”
ASME J. Dyn. Syst., Meas., Contr.
,
142
(
11
), p.
111005
.10.1115/1.4047825
19.
Vermillion
,
C.
,
Grunnagle
,
T.
,
Lim
,
R.
, and
Kolmanovsky
,
I.
,
2014
, “
Model-Based Plant Design and Hierarchical Control of a Prototype Lighter-Than-Air Wind Energy System, With Experimental Flight Test Results
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
531
542
.10.1109/TCST.2013.2263505
20.
Drela
,
M.
, and
Youngren
,
H.
,
1989
, “
XFOIL
,” Massachusetts Institute of Technology, Cambridge, MA, accessed Apr. 7 2022, https://web.mit.edu/drela/Public/web/xfoil/
21.
Drela
,
M.
, and
Youngren
,
H.
,
1989
, “
XFLR5
”, accessed Apr. 7, 2022, https://www.xflr5.tech/xflr5.htm
22.
Naik
,
K.
,
Beknalkar
,
S.
,
Reed
,
J.
,
Mazzoleni
,
A.
,
Fathy
,
H.
, and
Vermillion
,
C.
,
2023
, “
Pareto Optimal and Dual-Objective Geometric and Structural Design of an Underwater Kite for Closed-Loop Flight Performance
,”
ASME J. Dyn. Syst., Meas., Contr.
,
145
(
1
), p.
011005
.10.1115/1.4055978
23.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
Wiley
, Chichester, West Sussex, UK
24.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
Qblade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(
3
), pp.
264
269
.https://www.researchgate.net/publication/275638847_QBLADE_An_Open_Source_Tool_for_Design_and_Simulation_of_Horizontal_and_Vertical_Axis_Wind_Turbines
25.
Reed
,
J.
,
Cobb
,
M.
,
Daniels
,
J.
,
Siddiqui
,
A.
,
Muglia
,
M.
, and
Vermillion
,
C.
,
2020
, “
Hierarchical Control Design and Performance Assessment of an Ocean Kite in a Turbulent Flow Environment
,”
2020 IFAC World Congress
, Berlin, Germany, July 11–17, pp.
12726
12732
.10.1016/j.ifacol.2020.12.1887
26.
McCroskey
,
W.
,
1987
, “
A Critical Assessment of Wind Tunnel Results for the NACA 0012 Airfoil
,” NASA, Report No. 100019.
You do not currently have access to this content.