Abstract

Digital hydraulics is a novel alternative to proportional or servovalve-controlled systems in fluid power engineering, providing hydraulic systems with high-energy efficiency, good controllability, and insensitivity to contamination. Switched inertance hydraulic converters (SIHCs) are new digital hydraulic devices that can adjust flow and pressure by digital switching instead of throttling the flow. In this paper, an efficient closed-loop control system is proposed for SIHCs subject to time-varying loading conditions in which the load pressure and/or flow varies with time. The control system is designed to operate SIHCs at optimized switching frequencies and ratios that maximize system efficiency when the load varies. With the proposed controller, the SIHC can effectively adapt to the time-varying load and has achieved up to 10% efficiency improvement and up to 65% pressure ripple reduction without affecting the system's dynamic responses, compared with using a nonoptimized controller. The work shows the feasibility and advantages of simultaneously controlling the switching ratio and switching frequency of SIHCs with a time-varying load. As time-varying loading conditions are commonly found in hydraulic applications, the research outcomes constitute an important aspect in the design and development of highly efficient SIHCs and their practical use in hydraulic machinery.

References

1.
Yuan
,
C.
,
Plummer
,
A.
, and
Pan
,
M.
,
2021
, “
Efficient Control of a Switched Inertance Hydraulic Converter With a Time-Varying Load
,”
ASME
Paper No. FPMC2021-68832. 10.1115/FPMC2021-68832
2.
Achten
,
P.
,
Linjama
,
M.
,
Scheidl
,
R.
, and
Schmidt
,
S.
,
2012
, “
Discussion: Is the Future of Fluid Power Digital?
,”
P. I. Mech. Eng. I-J Sys.
,
226
(
6
), pp.
724
727
.10.1177/0959651812443935
3.
Yang
,
H. Y.
, and
Pan
,
M.
,
2015
, “
Engineering Research in Fluid Power: A Review
,”
J. Zhejiang Univ-SC A
,
16
(
6
), pp.
427
442
.10.1631/jzus.A1500042
4.
Pan
,
M.
, and
Plummer
,
A.
,
2018
, “
Digital Switched Hydraulics
,”
Front. Mech. Eng.
,
13
(
2
), pp.
225
231
.10.1007/s11465-018-0509-7
5.
Yuan
,
C.
,
Pan
,
M.
, and
Plummer
,
A.
,
2020
, “
A Review of Switched Inertance Hydraulic Converter Technology
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
5
), p.
050801
.10.1115/1.4046103
6.
Budden
,
J. J.
, and
Williamson
,
C.
,
2019
, “
Danfoss Digital Displacement® Excavator: Test Results and Analysis
,”
ASME
Paper No. FPMC2019-1669. 10.1115/FPMC2019-1669
7.
Williamson
,
C.
, and
Manring
,
N.
,
2019
, “
A More Accurate Definition of Mechanical and Volumetric Efficiencies for Digital Displacement® Pumps
,”
ASME
Paper No. FPMC2019-1668.10.1115/FPMC2019-1668
8.
Caldwell
,
N. J.
,
2007
, “
Digital Displacement Hydrostatic Transmission Systems
,” Ph.D. thesis,
University of Edinburgh
, Edinburgh, UK.
9.
Chao
,
Q.
,
Zhang
,
J.
,
Xu
,
B.
,
Huang
,
H.
, and
Pan
,
M.
,
2019
, “
A Review of High-Speed Electro-Hydrostatic Actuator Pumps in Aerospace Applications: Challenges and Solutions
,”
ASME J. Mech. Des.
,
141
(
5
), p.
050801
.10.1115/1.4041582
10.
Guo
,
Q.
,
Chen
,
Z.
, and
Jiang
,
D.
,
2022
, “
Leader-Following Synchronization Control of Multiple Electrohydraulic Actuators Under Switching Network Topologies
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
5
), p.
051001
.10.1115/1.4053245
11.
Pan
,
M.
,
Johnston
,
N.
,
Robertson
,
J.
,
Plummer
,
A.
,
Hillis
,
A.
, and
Yang
,
H. Y.
,
2015
, “
Experimental Investigation of a Switched Inertance Hydraulic System With a High-Speed Rotary Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
12
), p.
121003
.10.1115/1.4031325
12.
Linjama
,
M.
, and
Huhtala
,
K.
,
2010
, “
Digital Hydraulic Power Management System–Towards Lossless Hydraulics
,”
Proceedings of the Third Workshop on Digital Fluid Power
, Tampere, Finland, Oct. 13–14, pp.
5
22
.https://www.researchgate.net/publication/261144911_DIGITAL_HYDRAULIC_POWER_MANAGEMENT_SYST EM_-_TOWARDS_LOSSLESS_HYDRAULICS
13.
Heikkilä
,
M.
, and
Linjama
,
M.
,
2013
, “
Displacement Control of a Mobile Crane Using a Digital Hydraulic Power Management System
,”
Mechatronics
,
23
(
4
), pp.
452
461
.10.1016/j.mechatronics.2013.03.009
14.
Karvonen
,
M.
,
Heikkilä
,
M.
,
Tikkanen
,
S.
,
Linjama
,
M.
, and
Huhtala
,
K.
,
2014
, “
Aspects of the Energy Consumption of a Digital Hydraulic Power Management System Supplying a Digital and Proportional Valve Controlled Multi Actuator System
,” ASME Paper No. FPMC2014-7817. 10.1115/FPMC2014-7817
15.
Brandstetter
,
R.
,
Deubel
,
T.
,
Scheidl
,
R.
,
Winkler
,
B.
, and
Zeman
,
K.
,
2017
, “
Digital Hydraulics and Industrie 4.0
,”
P I Mech. Eng. I-J Sys.
,
231
(
2
), pp.
82
93
.10.1177/0959651816636734
16.
Yuan
,
C.
,
Mao Lung
,
V. L.
,
Plummer
,
A.
, and
Pan
,
M.
,
2020
, “
Theoretical and Experimental Studies of a Digital Flow Booster Operating at High Pressures and Flow Rates
,”
Processes
,
8
(
2
), p.
211
.10.3390/pr8020211
17.
Pan
,
M.
,
Johnston
,
D. N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
228
(
1
), pp.
12
25
.10.1177/0959651813500952
18.
Brown
,
F. T.
,
1987
, “
Switched Reactance Hydraulics: A New Way to Control Fluid Power
,”
National Conference on Fluid Power
, Chicago, IL, Mar. 2–5, pp.
25
33
.
19.
Brown
,
F.
,
Tentarelli
,
S.
, and
Ramachandran
,
S.
,
1988
, “
A Hydraulic Rotary Switched-Inertance Servo-Transformer
,”
ASME J. Dyn. Syst. Meas. Control
,
110
(
2
), pp.
144
150
.10.1115/1.3152664
20.
Liaw
,
C.-J.
, and
Brown
,
F.
,
1990
, “
Nonlinear Dynamics of an Electrohydraulic Flapper Nozzle Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
2
), pp.
298
304
.10.1115/1.2896139
21.
Kogler
,
H.
, and
Scheidl
,
R.
,
2008
, “
Two Basic Concepts of Hydraulic Switching Converters
,”
The First Workshop on Digital Fluid Power
, Tampere, Finland, Oct. 3, pp.
7
30
.
22.
Kogler
,
H.
,
Scheidl
,
R.
,
Ehrentraut
,
M.
,
Guglielmino
,
E.
,
Semini
,
C.
, and
Caldwell
,
D. G.
,
2010
, “
A Compact Hydraulic Switching Converter for Robotic Applications
,”
Proceedings of the ASME/BATH 2010 Symposium on Fluid Power and Motion Control
, Bath, UK, Sept. 15–17, pp.
55
66
.https://www.researchgate.net/publication/278486500_A_Compact_Hydraulic_Switching_Converter_for_Robotic_Applications
23.
Guglielmino
,
E.
,
Semini
,
C.
,
Yang
,
Y. S.
,
Caldwell
,
D.
,
Kogler
,
H.
, and
Scheidl
,
R.
,
2009
, “
Energy Efficient Fluid Power in Autonomous Legged Robotics
,”
ASME
Paper No. DSCC2009-2522. 10.1115/DSCC2009-2522
24.
Guglielmino
,
E.
,
Semini
,
C.
,
Kogler
,
H.
,
Scheidl
,
R.
, and
Caldwell
,
D. G.
,
2010
, “
Power Hydraulics-Switched Mode Control of Hydraulic Actuation
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
3031
3036
.10.1109/IROS.2010.5653181
25.
Peng
,
S.
,
Kogler
,
H.
,
Guglielmino
,
E.
,
Scheidl
,
R.
,
Branson
,
D. T.
, and
Caldwell
,
D. G.
,
2013
, “
The Use of a Hydraulic DC-DC Converter in the Actuation of a Robotic Leg
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Tokyo, Japan, Nov. 3–7, pp.
5859
5864
.10.1109/IROS.2013.6697205
26.
Wang
,
P.
,
Kudzma
,
S.
,
Johnston
,
N.
,
Plummer
,
A.
, and
Hillis
,
A.
,
2011
, “
The Influence of Wave Effects on Digital Switching Valve Performance
,”
The Fourth Workshop on Digital Fluid Power
, Linz, Austria, Sept. 21–22, pp.
10
25
.
27.
Pan
,
M.
,
Johnston
,
N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System Including Switching Transition Dynamics, Non-Linearity and Leakage
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
228
(
10
), pp.
802
815
.10.1177/0959651814548299
28.
Åström
,
K. J.
,
Hägglund
,
T.
, and
Astrom
,
K. J.
,
2006
,
Advanced PID Control
,
International Society of Automation Research
,
Triangle Park, NC
.
29.
Krus
,
P.
,
Weddfelt
,
K.
, and
Palmberg
,
J.-O.
,
1994
, “
Fast Pipeline Models for Simulation of Hydraulic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
1
), pp.
132
136
.10.1115/1.2900667
30.
Johnston
,
N.
,
2012
, “
The Transmission Line Method for Modelling Laminar Flow of Liquid in Pipelines
,”
P I Mech. Eng. I-J Sys.
,
226
(
5
), pp.
586
597
.10.1177/0959651811430035
31.
Johnston
,
D. N.
, and
Edge
,
K. A.
,
1991
, “
In-Situ Measurement of the Wavespeed and Bulk Modulus in Hydraulic Lines
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
205
(
3
), pp.
191
197
.10.1243/PIME_PROC_1991_205_331_02
32.
Yuan
,
C.
,
Plummer
,
A.
, and
Pan
,
M.
,
2022
, “
Switching Characteristics of a High-Speed Rotary Valve for Switched Inertance Hydraulic Converters
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
236
(
7
), pp.
1421
1441
.10.1177/09596518221082445
33.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
34.
Haessig
,
D. A.
, Jr.
, and
Friedland
,
B.
,
1991
, “
On the Modeling and Simulation of Friction
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
3
), pp.
354
362
.10.1115/1.2896418
35.
Tran
,
X.
,
Khaing
,
W.
,
Endo
,
H.
, and
Yanada
,
H.
,
2014
, “
Effect of Friction Model on Simulation of Hydraulic Actuator
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
228
(
9
), pp.
690
698
.10.1177/0959651814539476
36.
Kogler
,
H.
, and
Scheidl
,
R.
,
2015
, “
Linear Motion Control With a Low-Power Hydraulic Switching converter-Part I: Concept, Test Rig, Simulations
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
229
(
8
), pp.
677
684
.10.1177/0959651815583418
37.
Kogler
,
H.
, and
Scheidl
,
R.
,
2015
, “
Linear Motion Control With a Low-Power Hydraulic Switching converter-Part II: Flatness-Based Control
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
229
(
9
), pp.
818
828
.10.1177/0959651815589668
38.
Kogler
,
H.
, and
Scheidl
,
R.
,
2016
, “
Energy Efficient Linear Drive Axis Using a Hydraulic Switching Converter
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
9
), p.
091010
.10.1115/1.4033412
39.
Kogler
,
H.
,
Schöberl
,
M.
, and
Scheidl
,
R.
,
2019
, “
Passivity-Based Control of a Pulse-Width Mode Operated Digital Hydraulic Drive
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
233
(
6
), pp.
656
665
.10.1177/0959651818806420
You do not currently have access to this content.