Reduced-order observer design methods for both linear and nonlinear discrete-time descriptor systems based on the linear matrix inequality (LMI) approach are investigated. We conclude that the conditions under which a full-order observer exists can also guarantee the existence of a reduced-order observer. By choosing a special reduced-order observer gain matrix, a reduced-order unknown input observer is proposed for linear system with unknown inputs, and then an unknown input reconstruction is provided for some special cases. We also extend above results to the cases of nonlinear systems. Finally, three numerical comparative simulation examples are given to illustrate the effectiveness and merits of proposed methods.

References

1.
Kautsky
,
J.
,
Nichols
,
N. K.
, and
Van Dooren
,
P.
,
1985
, “
Robust Pole Assignment in Linear State Feedback
,”
Int. J. Control
,
41
(
5
), pp.
1129
1155
.10.1080/0020718508961188
2.
Brockett
,
R. W.
, and
Liberzon
,
D.
,
2000
, “
Quantized Feedback Stabilization of Linear Systems
,”
IEEE Trans. Autom. Control
,
45
(
7
), pp.
1279
1289
.10.1109/9.867021
3.
Ilic'-Spong
,
M.
,
Marino
,
R.
,
Peresada
,
S. M.
, and
Taylor
,
D.
,
1987
, “
Feedback Linearizing Control of Switched Reluctance Motors
,”
IEEE Trans. Autom. Control
,
32
(
5
), pp.
371
379
.10.1109/TAC.1987.1104616
4.
Devasia
,
S.
, and
Paden
,
B.
,
1994
, “
Exact Output Tracking for Nonlinear Time-Varying Systems
,” 33rd
IEEE
Conference on Decision and Control
, Vol.
3
, pp.
2346
2355
.10.1109/CDC.1994.411465
5.
Veillette
,
R. J.
,
1995
, “
Reliable Linear-Quadratic State-Feedback Control
,”
Automatica
,
31
(
1
), pp.
137
143
.10.1016/0005-1098(94)E0045-J
6.
Lunze
,
J.
, and
Lehmann
,
D.
,
2010
, “
A State-Feedback Approach to Event-Based Control
,”
Automatica
,
46
(
1
), pp.
211
215
.10.1016/j.automatica.2009.10.035
7.
Luenberger
,
D. G.
,
1964
, “
Observing the State of a Linear System
,”
IEEE Trans. Mil. Electron.
,
8
(
2
), pp.
74
80
.10.1109/TME.1964.4323124
8.
Zhu
,
F. L.
, and
Ding
,
X. H.
,
2007
, “
The Design of Reduced-Order Observer for Systems With Monotone Nonlinearities
,”
Acta Autom. Sin.
,
33
(
12
), pp.
1290
1293
.10.1360/aas-007-1290
9.
Zhang
,
W.
,
Su
,
H. S.
,
Wang
,
H. W.
, and
Han
,
Z. Z.
,
2012
, “
Full-Order and Reduced-Order Observers for One-Sided Lipschitz Nonlinear Systems Using Riccati Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
4968
4977
.10.1016/j.cnsns.2012.05.027
10.
Boutata
,
D.
,
Boutat-Baddasb
,
L.
, and
Darouachb
,
M.
,
2012
, “
A New Reduced-Order Observer Normal Form for Nonlinear Discrete Time Systems
,”
Syst. Control Lett.
,
61
(
10
), pp.
1003
1008
.10.1016/j.sysconle.2012.07.007
11.
Mehta
,
A. J.
,
Bandyopadhyay
,
B.
, and
Inoue
,
A.
,
2010
, “
Reduced-Order Observer Design for Servo System Using Duality to Discrete-Time Sliding-Surface Design
,”
IEEE Trans. Ind. Electron.
,
57
(
11
), pp.
3793
3800
.10.1109/TIE.2010.2040555
12.
Wang
,
H.
, and
Daley
,
S.
,
1996
, “
Actuator Fault Diagnosis: An Adaptive Observer-Based Technique
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
1073
1078
.10.1109/9.508919
13.
Yang
,
J. Q.
, and
Zhu
,
F. L.
,
2013
, “
Synchronization for Chaotic Systems and Chaos-Based Secure Communications Via Both Reduced-Order and Step-by-Step Sliding Mode Observers
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
4
), pp.
926
937
.10.1016/j.cnsns.2012.09.009
14.
Gao
,
Z. W.
, and
Ding
,
S. X.
,
2007
, “
Actuator Fault Robust Estimation and Fault-Tolerant Control for a Class of Nonlinear Descriptor Systems
,”
Automatica
,
43
(
5
), pp.
912
920
.10.1016/j.automatica.2006.11.018
15.
Duan
,
G.
,
2010
,
Analysis and Design of Descriptor Linear Systems
,
Springer Science & Business Media
, New York.10.1007/978-1-4419-6397-0
16.
Abbaszadeh
,
M.
, and
Marquez
,
H. J.
,
2012
, “
A Generalized Framework for Robust Nonlinear H∞ Filtering of Lipschitz Descriptor Systems With Parametric and Nonlinear Uncertainties
,”
Automatica
,
48
(
5
), pp.
894
900
.10.1016/j.automatica.2012.02.033
17.
Shields
,
D. N.
,
1997
, “
Observer Design and Detection for Nonlinear Descriptor Systems
,”
Int. J. Control
,
67
(
2
), pp.
153
168
.10.1080/002071797224234
18.
Darouach
,
M.
, and
Boutayeb
,
M.
,
1995
, “
Design of Observers for Descriptor Systems
,”
IEEE Trans. Autom. Control
,
40
(
7
), pp.
1323
1327
.10.1109/9.400467
19.
Darouach
,
M.
, and
Boutat-Baddas
,
L.
,
2008
, “
Observers for a Class of Nonlinear Singular Systems
,”
IEEE Trans. Autom. Control
,
53
(
11
), pp.
2627
2633
.10.1109/TAC.2008.2007868
20.
Yang
,
C.
,
Kong
,
Q.
, and
Zhang
,
Q.
,
2013
, “
Observer Design for a Class of Nonlinear Descriptor Systems
,”
J. Franklin Inst.
,
350
(
5
), pp.
1284
1297
.10.1016/j.jfranklin.2012.04.008
21.
Darouach
,
M.
,
2012
, “
On the Functional Observers for Linear Descriptor Systems
,”
Syst. Control Lett.
,
61
(
3
), pp.
427
434
.10.1016/j.sysconle.2012.01.006
22.
Yang
,
C. Y.
,
Zhang
,
Q. L.
, and
Chai
,
T. Y.
,
2013
, “
Nonlinear Observers for a Class of Nonlinear Descriptor Systems
,”
Optim. Control Appl. Methods
,
34
(
3
), pp.
348
363
.10.1002/oca.2028
23.
Darouach
,
M.
,
Boutat-Baddas
,
L.
, and
Zerrougui
,
M.
,
2013
, “
H∞ Filter Design for a Class of Nonlinear Discrete-Time Singular Systems
,”
Int. J. Control
,
86
(
9
), pp.
1597
1606
.10.1080/00207179.2013.792000
24.
Xu
,
S. Y.
, and
Lam
,
J.
,
2007
, “
Reduced-Order H∞ Filtering for Singular Systems
,”
Syst. Control Lett.
,
56
(
1
), pp.
48
57
.10.1016/j.sysconle.2006.07.010
25.
Lu
,
G. P.
,
2006
, “
Full-Order and Reduced-Order Observers for Lipschitz Descriptor Systems: The Unified LMI Approach
,”
IEEE Trans. Circuits Syst. II
,
53
(
7
), pp.
563
567
.10.1109/TCSII.2006.875332
26.
Wang
,
Z. H.
,
Shen
,
Y.
,
Zhang
,
X. L.
, and
Wang
,
Q.
,
2012
, “
Observer Design for Discrete-Time Descriptor Systems: An LMI Approach
,”
Syst. Control Lett.
,
61
(
6
), pp.
683
687
.10.1016/j.sysconle.2012.03.006
You do not currently have access to this content.