In this paper, we first review the new algorithm for the two-stage feedback controller design of linear discrete-time systems, and then provide conditions for its applicability. The design algorithm is specialized and simplified for a class of linear systems with slow and fast modes (multitime scale systems or singularly perturbed systems). The proposed design significantly reduces computational full-state feedback design requirements and provides independent and accurate feedback controller design techniques in slow and fast time scales. We present also conditions needed for applicability of the proposed two-stage design in two time scales. The power of the two-stage design lies in the fact that different types of controllers can be designed for different subsystems using the corresponding feedback gains obtained by performing calculations only with the subsystem (reduced-order) matrices.

References

1.
Sinha
,
A.
,
2007
,
Linear Systems: Optimal and Robust Control
,
Francis & Taylor/CRC Press
,
Boca Raton
.
2.
Franklin
,
G.
,
Powel
,
J.
, and
Workman
,
M.
,
1990
,
Digital Control of Dynamic Systems
,
Addison Wesley
, Reading, MA.
3.
Ogata
,
K.
,
1995
,
Discrete-Time Control Systems
, 2nd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
4.
Naidu
,
D. S.
, and
Rao
,
A. K.
,
1985
,
Singular Perturbation Analysis of Discrete Control Systems
,
Springer
,
New York
.
5.
Kokotovic
,
P.
,
Khalil
,
H.
, and
O’Reilly
,
J.
,
2000
,
Singular Perturbation Methods in Control: Analysis and Design
,
SIAM Publishers
,
Philadelphia
.
6.
Naidu
,
D.
, and
Calise
,
A.
,
2001
, “
Singular Perturbations and Time Scales in Guidance and Control of Aerospace Systems: Survey
,”
AIAA J. Guid. Control
,
24
(
6
), pp.
1057
1078
.10.2514/2.4830
7.
Dimitriev
,
M.
, and
Kurina
,
G.
,
2006
, “
Singular Perturbations in Control Problems
,”
Autom. Remote Control
,
67
(1), pp.
1
43
.10.1134/S0005117906010012
8.
Kuehn
,
C.
,
2015
, “
Multiple Time Scale Dynamics
,”
Springer
,
New York
.
9.
Zhang
,
Y.
,
Naidu
,
D. S.
,
Cai
,
C.
, and
Zou
,
Y.
,
2014
, “
Singular Perturbation and Time Scales in Control Theories and Applications: An Overview 2002–2012
,”
Int. J. Inf. Syst. Sci.
,
9
(
1
), pp.
1
36
.
10.
Litkouhi
,
B.
, and
Khalil
,
H.
,
1985
, “
Multirate and Composite Control of Two-Time-Scale Discrete-Time Systems
,”
IEEE Trans. Autom. Control
,
30
(
7
), pp.
645
651
.10.1109/TAC.1985.1104024
11.
Rao
,
A. K.
, and
Naidu
,
D. S.
,
1981
, “
Singularly Perturbed Boundary-Value Problems in Discrete Systems
,”
Int. J. Control
,
34
(6), pp.
1163
1174
.10.1080/00207178108922589
12.
Litkouhi
,
B.
, and
Khalil
,
H.
,
1984
, “
Infinite-Time Regulators for Singularly Perturbed Difference Equations
,”
Int. J. Control
,
39
(
3
), pp.
587
598
.10.1080/00207178408933190
13.
Bidani
,
M.
,
Randhy
,
N. E.
, and
Bensassi
,
B.
,
2002
, “
Optimal Control of Discrete-Time Singularly Perturbed Systems
,”
Int. J. Control
,
75
(13), pp.
955
966
.10.1080/00207170210156152
14.
Kim
,
B.-S.
,
Kim
,
Y.-J.
, and
Lim
,
M.-T.
,
2004
, “
LQG Control for Nonstandard Singularly Perturbed Discrete-Time Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
4
), pp.
860
864
.10.1115/1.1850537
15.
Hsiao
,
F. H.
,
Hwang
,
J. D.
, and
Pan
,
S. T.
,
2001
, “
Stabilization of Discrete Singularly Perturbed Systems Under Composite Observer-Based Controller
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(
1
), pp.
132
139
.10.1115/1.1285759
16.
Chen
,
C. F.
,
Pan
,
S. T.
, and
Hsieh
,
J. G.
,
2002
, “
Stability Analysis of a Class of Uncertain Discrete Singularly Perturbed Systems With Multiple Time Delays
,”
ASME J. Dyn. Syst., Meas., Control
,
124
(
3
), pp.
467
472
.10.1115/1.1485098
17.
Demetriou
,
M.
, and
Kazantzis
,
N.
,
2005
, “
Natural Observer Design for Singularly Perturbed Vector Second-Order Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
4
), pp.
648
655
.10.1115/1.2101847
18.
Amjadifard
,
R.
,
Beheshti
,
M.
, and
Yazdanpaanah
,
M.
,
2011
, “
Robust Stabilization for a Class of Nonlinear Singularly Perturbed Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(5), p.
051004
.10.1115/1.4003383
19.
Naidu
,
D.
,
2010
, “
Analysis of Non-Dimensional Forms of Singular Perturbation Structures for Hypersonic Vehicles
,”
Acta Astronaut.
,
66
(
3–4
), pp.
577
586
.10.1016/j.actaastro.2009.07.020
20.
Wang
,
M.-S.
,
Li
,
T.-H.
, and
Sun
,
Y.-Y.
,
1996
, “
Design of Near-Optimal Observer-Based Controllers for Singularly Perturbed Discrete Systems
,”
JSME Int. J. Ser. C
,
39
(2), pp.
234
241
.
21.
Radisavljevic-Gajic
,
R.
,
2015
, “
A Simplified Two-Stage Design of Linear Discrete-Time Feedback Controllers
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(1), p.
014506
.10.1115/1.4028153
22.
Mahmoud
,
M. S.
,
Chen
,
Y.
, and
Singh
,
M.
,
1985
, “
On Eigenvalue Assignment for Discrete Systems With Fast and Slow Modes
,”
Int. J. Syst. Sci.
,
16
(
1
), pp.
61
70
.10.1080/00207728508926655
23.
Calise
,
A.
,
Markopoulos
,
N.
, and
Corban
,
J.
,
1994
, “
Nondimensional Forms for Singular Perturbation Analysis of Aircraft Energy Claims
,”
AIAA J. Guid. Control Dyn.
,
17
(
3
), pp.
584
590
.10.2514/3.21237
24.
Shapira
,
H.
, and
Ben-Asher
,
J.
,
2004
, “
Singular Perturbation Analysis of Optimal Glide
,”
AIAA J. Guid. Control Dyn.
,
27
(
5
), pp.
915
918
.10.2514/1.2104
25.
Singh
,
H.
,
Naidu
,
D.
, and
Moore
,
K.
,
1996
, “
Regional Pole Placement Method for Discrete-Time Systems
,”
AIAA J. Guid. Control Dyn.
,
19
(
4
), pp.
974
976
.10.2514/3.21729
26.
Medanic
,
J.
,
1982
, “
Geometric Properties and Invariant Manifolds of the Riccati Equation
,”
IEEE Trans. Autom. Control
,
27
(
3
), pp.
670
677
.10.1109/TAC.1982.1102989
27.
Guo
,
C.
, and
Laub
,
A.
,
2000
, “
On the Iterative Solution of a Class of Nonsymmetric Algebraic Riccati Equations
,”
SIAM J. Matrix Anal. Appl.
,
22
(
2
), pp.
376
391
.10.1137/S089547989834980X
28.
Bingulac
,
S.
,
Kecman
,
V.
, and
Gajic
,
Z.
,
1999
, “
Eigenvector Approach for Order-Reduction of Singularly Perturbed Linear-Quadratic Optimal Control Problems
,”
Automatica
,
35
(
1
), pp.
151
158
.10.1016/S0005-1098(98)00141-1
29.
Chen
,
T.
,
2013
,
Linear System Theory and Design
, 4th ed.,
Oxford University Press
,
Oxford
.
30.
Rugh
,
W.
,
1996
,
Linear System Theory
, 2nd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
31.
Ortega
,
J.
, and
Reinhardt
,
W.
,
2000
,
Iterative Solution of Nonlinear Equations on Several Variables
,
SIAM
,
Philadelphia
.
You do not currently have access to this content.