This paper considers a class of mechanical systems with uncertainties appearing in all the mass, damping, and stiffness matrices. Two cases, linear fractional and randomly occurring uncertainty formulations, are considered. Since sampled-data controllers have an advantage of implementing with microcontroller or digital computer to lower the implementation cost and time, a robust stochastic sampled-data controller is considered with m sampling intervals whose occurrence probabilities are given constants and satisfy Bernoulli distribution. A discontinuous type Lyapunov functional based on the extended Wirtinger's inequality is constructed with triple integral terms and sufficient conditions that promises the robust mean square asymptotic stability of the concerned system are derived in terms of linear matrix inequalities (LMIs). In an aim to reduce the conservatism, a newly introduced concept called the second-order reciprocally convex approach is employed in deriving the bound for some cross terms that arise while maneuvering the derivative of Lyapunov functional. The obtained LMIs can be easily solved through any of the standard available software. Finally, numerical examples are given to verify the effectiveness of the proposed theoretical results.

References

1.
Campion
,
G.
,
d'Andrea-Novel
,
B.
, and
Bastin
,
G.
,
1991
, “
Controllability and State Feedback Stabilizability of Nonholonomic Mechanical Systems
,”
International Workshop on Nonlinear and Adaptive Control: Issues in Robotics
, Grenoble, France, pp.
106
124
.
2.
Potsaid
,
B.
, and
Wen
,
J. T.
,
2002
, “
Optimal Mechanical Design of a Rotary Inverted Pendulum
,”
IEEE/RSJ
International Conference on IROS
, EPFL, Laussanne, Switzerland, pp.
2079
2084
.
3.
Yao
,
B.
, and
Xu
,
L.
,
2002
, “
Adaptive Robust Motion Control of Linear Motors for Precision Manufacturing
,”
Mechatronics
,
12
(
4
), pp.
595
616
.
4.
Tang
,
K. Z.
,
Huang
,
S. N.
,
Tan
,
K. K.
, and
Lee
,
T. H.
,
2004
, “
Combined PID and Adaptive Nonlinear Control for Servo Mechanical Systems
,”
Mechatronics
,
14
(
6
), pp.
701
714
.
5.
Xia
,
Y.
,
Shi
,
P.
,
Liu
,
G.
, and
Rees
,
D.
,
2005
, “
Robust Mixed H2/H∞ State Feedback Control for Continuous-Time Descriptor Systems With Parameter Uncertainties
,”
Circuits, Syst., Signal Process.
,
24
(
4
), pp.
431
443
.
6.
Kar
,
I. N.
,
Miyakura
,
T.
, and
Seto
,
K.
,
2000
, “
Bending and Torsional Vibration Control of a Flexible Plate Structure Using H1-Based Robust Control Law
,”
IEEE Trans. Control Syst. Technol.
,
8
(
3
), pp.
545
553
.
7.
Shi
,
P.
,
1998
, “
Filtering on Sampled-Data Systems With Parametric Uncertainty
,”
IEEE Trans. Autom. Control
,
43
(
7
), pp.
1022
1027
.
8.
Li
,
F.
,
Shi
,
P.
, and
Lim
,
C.-C.
,
2015
, “
State Estimation and Sliding Mode Control for Semi-Markovian Jump Systems With Mismatched Uncertainties
,”
Automatica
,
51
, pp.
385
393
.
9.
Li
,
T.
,
Guo
,
L.
, and
Lin
,
C.
,
2007
, “
A New Criterion of Delay Dependent Stability for Uncertain Time-Delay Systems
,”
IET Control Theory Appl.
,
1
(
3
), pp.
611
616
.
10.
Li
,
T.
,
Guo
,
L.
, and
Sun
,
C.
,
2007
, “
Robust Stability for Neural Networks With Time-Varying Delays and Linear Fractional Uncertainties
,”
Neurocomputing
,
71
(
1–3
), pp.
421
427
.
11.
Balasubramaniam
,
P.
, and
Lakshmanan
,
S.
,
2011
, “
Delay-Interval-Dependent Robust-Stability Criteria for Neutral Stochastic Neural Networks With Polytopic and Linear Fractional Uncertainties
,”
Int. J. Comput. Math.
,
88
(
10
), pp.
2001
2015
.
12.
Balasubramaniam
,
P.
,
Lakshmanan
,
S.
, and
Rakkiyappan
,
R.
,
2012
, “
LMI Optimization Problem of Delay-Dependent Robust Stability Criteria for Stochastic Systems With Polytopic and Linear Fractional Uncertainties
,”
Int. J. Appl. Math. Comput. Sci.
,
22
(
2
), pp.
339
351
.
13.
Zames
,
G.
,
1981
, “
Feedback and Optimal Sensitivity Model Reference Transformations, Multiplicative Seminorms and Approximate Inverses
,”
IEEE Trans. Autom. Control
,
26
(
2
), pp.
301
320
.
14.
Huang
,
J.
, and
Shi
,
Y.
,
2013
, “
H∞ State Feedback Control for Semi-Markov Jump Linear Systems With Time-Varying Delays
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
4
), p.
041012
.
15.
Wang
,
C.
, and
Shen
,
Y.
,
2012
, “
Robust H∞ Control for Stochastic Systems With Nonlinearity, Uncertainty and Time-Varying Delay
,”
Comput. Math. Appl.
,
63
(
5
), pp.
985
998
.
16.
Yazici
,
H.
,
Kucukdemiral
,
I. B.
,
Parlakci
,
M. N. A.
, and
Guclu
,
R.
,
2012
, “
Robust Delay-Dependent H∞ Control for Uncertain Structural Systems With Actuator Delay
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
3
), p.
031013
.
17.
Yang
,
X.
,
Gao
,
H.
, and
Shi
,
P.
,
2010
, “
Robust H∞ Control for a Class of Uncertain Mechanical Systems
,”
Int. J. Control
,
83
(
7
), pp.
1303
1324
.
18.
Du
,
H.
,
Lam
,
J.
, and
Sze
,
K.
,
2005
, “
H∞ Disturbance Attenuation for Uncertain Mechanical Systems With Input Delay
,”
Trans. Inst. Meas. Control
,
27
(
1
), pp.
37
52
.
19.
Lei
,
J.
,
2013
, “
Optimal Vibration Control for Uncertain Nonlinear Sampled-Data Systems With Actuator and Sensor Delays: Application to a Vehicle Suspension
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
2
), p.
021021
.
20.
Lam
,
H.
,
2012
, “
Stabilization of Nonlinear Systems Using Sampled-Data Output-Feedback Fuzzy Controller Based on Polynomial-Fuzzy-Model-Based Control Approach
,”
IEEE Trans. Syst. Man Cybern. Part B Cybern.
,
42
(
1
), pp.
258
267
.
21.
Pertew
,
A. W.
,
Marquez
,
H. J.
, and
Zhao
,
Q.
,
2009
, “
Sampled-Data Stabilization of a Class of Nonlinear Systems With Applications in Robotics
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
2
), p.
021008
.
22.
Astrom
,
K.
, and
Wittenmark
,
B.
,
1989
,
Adaptive Control
,
Addison-Wesley
,
Reading, MA
.
23.
Mikheev
,
Y. V.
,
Sobolev
,
V. A.
, and
Fridman
,
E.
,
1988
, “
Asymptotic Analysis of Digital Control Systems
,”
Autom. Remote Control
,
49
(
9
), pp.
1175
1180
.
24.
Tahara
,
S.
,
Fujii
,
T.
, and
Yokoyama
,
T.
,
2007
, “
Variable Sampling Quasi Multirate Deadbeat Control Method for Single Phase PWM Inverter in Low Carrier Frequency
,”
Power Conversion Conference
, Nagoya, Japan, Apr. 2–5, pp.
804
809
.
25.
Hu
,
B.
, and
Michel
,
A. N.
,
2000
, “
Stability Analysis of Digital Feedback Control Systems With Time-Varying Sampling Periods
,”
Automatica
,
36
(
6
), pp.
897
905
.
26.
Shen
,
B.
,
Wang
,
Z.
, and
Liu
,
X.
,
2012
, “
Sampled-Data Synchronization Control of Dynamical Networks With Stochastic Sampling
,”
IEEE Trans. Autom. Control
,
57
(
10
), pp.
2644
2650
.
27.
Gao
,
H.
,
Wu
,
J.
, and
Shi
,
P.
,
2009
, “
Robust Sampled-Data H∞ Control With Stochastic Sampling
,”
Automatica
,
45
(
7
), pp.
1729
1736
.
28.
Lee
,
T. H.
,
Park
,
J. H.
,
Lee
,
S. M.
, and
Kwon
,
O. M.
,
2013
, “
Robust Synchronization of Chaotic Systems With Randomly Occurring Uncertainties Via Stochastic Sampled-Data Control
,”
Int. J. Control
,
86
(
1
), pp.
107
119
.
29.
Lee
,
T. H.
,
Park
,
J. H.
,
Kwon
,
O. M.
, and
Lee
,
S. M.
,
2013
, “
Stochastic Sampled-Data Control for State Estimation of Time-Varying Delayed Neural Networks
,”
Neural Network
,
46
, pp.
99
108
.
30.
Bamieh
,
B.
, and
Pearson
,
J.
,
1992
, “
A General Framework for Linear Periodic Systems With Applications to H∞ Sampled-Data Control
,”
IEEE Trans. Autom. Control
,
37
(
4
), pp.
418
435
.
31.
Sivashankar
,
N.
, and
Khargonekar
,
P.
,
1994
, “
Characterization of the L2-Induced Norm for Linear Systems With Jumps With Applications to Sampled-Data Systems
,”
SIAM J. Control Optim.
,
32
(
4
), pp.
1128
1150
.
32.
Li
,
F.
,
Shi
,
P.
,
Wu
,
L.
, and
Zhang
,
X.
,
2014
, “
Fuzzy-Model-Based-Stability and Nonfragile Control for Discrete-Time Descriptor Systems With Multiple Delays
,”
IEEE Trans. Fuzzy Syst.
,
22
(
4
), pp.
1019
1025
.
33.
Fridman
,
E.
,
Shaked
,
U.
, and
Suplin
,
V.
,
2005
, “
Input/Output Delay Approach to Robust Sampled-Data H∞ Control
,”
Syst. Control Lett.
,
54
(
3
), pp.
271
282
.
34.
Fridman
,
E.
, and
Am
,
N. B.
,
2013
, “
Sampled-Data Distributed H∞ Control of Transport Reaction Systems
,”
SIAM J. Control Optim.
,
51
(
2
), pp.
1500
1527
.
35.
Gao
,
H.
,
Sun
,
W.
, and
Shi
,
P.
,
2010
, “
Robust Sampled-Data H∞ Control for Vehicle Active Suspension Systems
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
238
245
.
36.
Weng
,
Y.
, and
Chao
,
Z.
,
2014
, “
Robust Sampled-Data H∞ Output Feedback Control of Active Suspension System
,”
Int. J. Innovative Comput. Inf. Control
,
10
(
1
), pp.
281
292
.
37.
Lien
,
C. H.
,
Chen
,
J. D.
,
Yu
,
K. W.
, and
Chung
,
L. Y.
,
2012
, “
Robust Delay-Dependent H∞ Control for Uncertain Switched Time-Delay Systems Via Sampled-Data State Feedback Input
,”
Comput. Math. Appl.
,
64
(
5
), pp.
1187
1196
.
38.
Ren
,
F.
, and
Cao
,
J.
,
2006
, “
Novel α – Stability Criterion of Linear Systems With Multiple Time Delays
,”
Appl. Math. Comput.
,
181
(
1
), pp.
282
290
.
39.
Liu
,
F.
,
He
,
F.
, and
Yao
,
Y.
,
2008
, “
Linear Matrix Inequality-Based Robust H∞ Control of Sampled-Data Systems With Parametric Uncertainties
,”
IET Control Theory Appl.
,
2
(
4
), pp.
253
260
.
40.
Park
,
P. G.
,
Ko
,
J. W.
, and
Jeong
,
C.
,
2011
, “
Reciprocally Convex Approach to Stability of Systems With Time-Varying Delays
,”
Automatica
,
47
(
1
), pp.
235
238
.
41.
Liu
,
J.
, and
Zhang
,
J.
,
2012
, “
Note on Stability of Discrete-Time Time-Varying Delay Systems
,”
IET Control Theory Appl.
,
6
(
2
), pp.
335
339
.
42.
Feng
,
Z.
, and
Lam
,
J.
,
2012
, “
Integral Partitioning Approach to Robust Stabilization for Uncertain Distributed Time-Delay Systems
,”
Int. J. Robust Nonlinear Control
,
22
(
6
), pp.
676
689
.
43.
Lee
,
W.
, and
Park
,
P.
,
2014
, “
Second-Order Reciprocally Convex Approach to Stability of Systems With Interval Time-Varying Delays
,”
Appl. Math. Comput.
,
229
, pp.
245
253
.
44.
Sakthivel
,
R.
,
Arunkumar
,
A.
, and
Mathiyalagan
,
K.
,
2015
, “
Robust Sampled-Data H∞ Control for Mechanical Systems
,”
Complexity
,
20
(
4
), pp.
19
29
.
You do not currently have access to this content.