This paper presents an accurate and computationally efficient time-domain design method for the proportional–integral–derivative (PID) control of first-order and second-order plants in the presence of discrete time delays. As time delays would generally deteriorate the achievable performance of the PID controllers, their effects should be thoroughly considered in the controller design and parameter tuning process. This paper is thereby motivated to propose a time-domain semi-analytical method for the parameter tuning and stability analysis of PID controllers of the time-delay systems. To facilitate this development, the transfer functions of the investigated plants associated with the PID controllers are first rewritten as linear periodic delayed differential equations (DDEs) in state-space form. Then, the differential quadrature method (DQM) is adopted to estimate the time derivative of the state-space function at each sampling grid point within a duration of the time delay by the weighted linear sum of the function values over the whole sampling grid points. In this way, the DDEs in the time-delay duration are discretized as a series of algebraic equations, and the transition matrix can be obtained by combining these discretized algebraic equations. Thereafter, the stability boundary can be determined and the optimal control gains are obtained by minimizing the largest absolute eigenvalue of the transition matrix. As the minimum problems are commonly solved by the gradient descent approaches, the analytical form of the gradient of the largest absolute eigenvalue of transition matrix with respect to the control gains is explicitly presented. Finally, extensive numeric examples are provided, and the proposed DQM is proven to be an accurate and computationally efficient way to tune the optimal control gains and estimate the stability region in the control gain space.

References

1.
Sheng
,
J.
, and
Sun
,
J.
,
2005
, “
Feedback Controls and Optimal Gain Design of Delayed Periodic Linear Systems
,”
J. Vib. Control
,
11
(
2
), pp.
277
294
.10.1177/107754605040947
2.
Camacho
,
E. F.
, and
Alba
,
C. B.
,
2013
,
Model Predictive Control
,
Springer
,
London
.
3.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2013
, “
Proportional–Integral Control of First-Order Time-Delay Systems Via Eigenvalue Assignment
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1586
1594
.10.1109/TCST.2012.221
4.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
, “
Robust Control and Time-Domain Specifications for Systems of Delay Differential Equations Via Eigenvalue Assignment
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
3
), p.
031003
.10.1115/1.4001339
5.
Atay
,
F. M.
,
2002
, “
Delayed-Feedback Control of Oscillations in Non-Linear Planar Systems
,”
Int. J. Control
,
75
(
5
), pp.
297
304
.10.1080/00207170110107265
6.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
(Applied Mathematical Sciences, Vol.
178
),
Springer
,
London
.10.1007/978-1-4614-0335-7
7.
Silva
,
G. J.
,
Datta
,
A.
, and
Bhattacharyya
,
S. P.
,
2007
,
PID Controllers for Time-Delay Systems
,
Birkhäuser
,
Boston
.
8.
Smith
,
O. J.
,
1957
, “
Closer Control of Loops With Dead Time
,”
Chem. Eng. Prog.
,
53
(
5
), pp.
217
219
.
9.
Insperger
,
T.
, and
Milton
,
J.
,
2014
, “
Sensory Uncertainty and Stick Balancing at the Fingertip
,”
Biol. Cybern.
,
108
(
1
), pp.
85
101
.10.1007/s00422-013-0582-2
10.
Molnar
,
T. G.
, and
Insperger
,
T.
, “
On the Robust Stabilizability of Unstable Systems With Feedback Delay by Finite Spectrum Assignment
,”
J. Vib. Control
.10.1177/1077546314529602
11.
Michiels
,
W.
,
Engelborghs
,
K.
,
Vansevenant
,
P.
, and
Roose
,
D.
,
2002
, “
Continuous Pole Placement for Delay Equations
,”
Automatica
,
38
(
5
), pp.
747
761
.10.1016/S0005-1098(01)00257-6
12.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.10.1002/nme.505
13.
Zhang
,
X.-Y.
, and
Sun
,
J.-Q.
,
2014
, “
A Note on the Stability of Linear Dynamical Systems With Time Delay
,”
J. Vib. Control.
,
20
(
10
), pp.
1520
1527
.10.1177/1077546312473319
14.
Farkas
,
M.
,
1994
,
Periodic Motions
,
Springer-Verlag
,
New York
.10.1007/978-1-4757-4211-4
15.
Pinto
,
O. C.
, and
Gonçalves
,
P. B.
,
2002
, “
Control of Structures With Cubic and Quadratic Non-Linearities With Time Delay Consideration
,”
J. Braz. Soc. Mech. Sci.
,
24
(
2
), pp.
99
104
.10.1590/S0100-73862002000200003
16.
Cai
,
G.
, and
Huang
,
J.
,
2002
, “
Optimal Control Method With Time Delay in Control
,”
J. Sound Vib.
,
251
(
3
), pp.
383
394
.10.1006/jsvi.2001.3999
17.
Klein
,
E. J.
, and
Ramirez
,
W. F.
,
2001
, “
State Controllability and Optimal Regulator Control of Time-Delayed Systems
,”
Int. J. Control
,
74
(
3
), pp.
281
289
.10.1080/00207170010003469
18.
Shao
,
C.
, and
Sheng
,
J.
,
2012
, “
Stability Analysis and Control of Linear Periodic Time-Delay Systems With State-Space Models Based on Semi-Discretization
,”
2012
UKACC IEEE
International Conference on Control, Cardiff, UK, Sept. 3–5, pp.
784
788
.10.1109/CONTROL.2012.6334729
19.
Hohenbichler
,
N.
,
2009
, “
All Stabilizing PID Controllers for Time Delay Systems
,”
Automatica
,
45
(
11
), pp.
2678
2684
.10.1016/j.automatica.2009.07.026
20.
Wang
,
D.-J.
,
2012
, “
A PID Controller Set of Guaranteeing Stability and Gain and Phase Margins for Time-Delay Systems
,”
J. Process Control
,
22
(
7
), pp.
1298
1306
.10.1016/j.jprocont.2012.05.019
21.
Bozorg
,
M.
, and
Termeh
,
F.
,
2011
, “
Domains of PID Controller Coefficients Which Guarantee Stability and Performance for LTI Time-Delay Systems
,”
Automatica
,
47
(
9
), pp.
2122
2125
.10.1016/j.automatica.2011.06.002
22.
Wang
,
Q.-G.
,
Le
,
B.-N.
, and
Lee
,
T.-H.
,
2014
, “
Parametric Approach to Computing Stabilizing PID Regions
,”
11th IEEE International Conference on Control & Automation
(
ICCA
), Taichung, Taiwan, June 18–20, pp.
959
964
.10.1109/ICCA.2014.6871051
23.
Nesimioglu
,
B.
, and
Soylemez
,
M.
,
2012
, “
A Simple Derivation of All Stabilizing Proportional Controllers for First Order Time-Delay Systems
,”
Asian J. Control
,
14
(
2
), pp.
598
604
.10.1002/asjc.318
24.
Wu
,
D.
, and
Sinha
,
S.
,
1994
, “
A New Approach in the Analysis of Linear-Systems With Periodic Coefficients for Applications in Rotorcraft Dynamics
,”
Aeronaut. J.
,
98
(
971
), pp.
9
16
.
25.
Shu
,
C.
,
2000
,
Differential Quadrature and Its Application in Engineering
,
Springer
,
London
.10.1007/978-1-4471-0407-0
26.
Fung
,
T.
,
2001
, “
Solving Initial Value Problems by Differential Quadrature Method—Part 2: Second- and Higher-Order Equations
,”
Int. J. Numer. Methods Eng.
,
50
(
6
), pp.
1429
1454
.10.1002/1097-0207(20010228)50:6<1429::AID-NME79>3.0.CO;2-A
27.
Meyer
,
C. D.
,
2000
,
Matrix Analysis and Applied Linear Algebra
,
SIAM
,
Philadelphia, PA
.10.1137/1.9780898719512
28.
Mann
,
B.
, and
Patel
,
B.
,
2010
, “
Stability of Delay Equations Written as State Space Models
,”
J. Vib. Control
,
16
(
7–8
), pp.
1067
1085
.10.1177/1077546309341111
29.
Quan
,
J.
, and
Chang
,
C.
,
1989
, “
New Insights in Solving Distributed System Equations by the Quadrature Method—I. Analysis
,”
Comput. Chem. Eng.
,
13
(
7
), pp.
779
788
.10.1016/0098-1354(89)85051-3
30.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Stability Analysis of Milling Via the Differential Quadrature Method
,”
ASME J. Manuf. Sci. Eng
,
135
(
4
), p.
044502
.10.1115/1.4024539
31.
Bert
,
C. W.
, and
Malik
,
M.
,
1996
, “
Differential Quadrature Method in Computational Mechanics: A Review
,”
ASME Appl. Mech. Rev.
,
49
(
1
), pp.
1
28
.10.1115/1.3101882
32.
Fung
,
T.
,
2001
, “
Solving Initial Value Problems by Differential Quadrature Method—Part 1: First-Order Equations
,”
Int. J. Numer. Methods Eng.
,
50
(
6
), pp.
1411
1427
.10.1002/1097-0207(20010228)50:6<1411::AID-NME78>3.0.CO;2-O
33.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2012
, “
Response Sensitivity Analysis of the Dynamic Milling Process Based on the Numerical Integration Method
,”
Chin. J. Mech. Eng.
,
25
(
5
), pp.
940
946
.10.3901/CJME.2012.05.940
34.
Lax
,
P. D.
,
2007
,
Linear Algebra and Its Applications
,
Wiley-Interscience
,
New York
.
35.
Yang
,
W. Y.
,
Cao
,
W.
,
Chung
,
T.-S.
, and
Morris
,
J.
,
2005
,
Applied Numerical Methods Using MATLAB®
,
Wiley
,
Hoboken, NJ
.
36.
Xue
,
D.
, and
Chen
,
Y.
,
2014
,
System Simulation Techniques With MATLAB® and Simulink®
,
Wiley
,
Chichester, UK
.
37.
Wang
,
D.-J.
,
2013
,
Controller Design of the Lower Order Time-Delay Systems: A Parametric Space Approach
,
Science Press
,
Beijing
.
You do not currently have access to this content.