Abstract

Deep learning has significantly improved the state-of-the-art in computer vision and natural language processing, and holds great potential to design effective tools for predicting and simulating complex engineering systems. In particular, scientific machine learning seeks to apply the power of deep learning to scientific and engineering tasks, with operator learning (OL) emerging as a particularly effective tool. OL can approximate nonlinear operators arising in complex engineering systems, making it useful for simulating, designing, and controlling those systems. In this position paper, we provide a comprehensive overview of OL, including its potential applications to complex engineering domains. We cover three variations of OL approaches: deterministic OL for modeling nonautonomous systems, OL with uncertainty quantification (UQ) capabilities, and multifidelity OL. For each variation, we discuss drawbacks and potential applications to engineering, in addition to providing a detailed explanation. We also highlight how multifidelity OL approaches with UQ capabilities can be used to design, optimize, and control engineering systems. Finally, we outline some potential challenges for OL within the engineering domain.

References

1.
Efendiev
,
Y.
,
Leung
,
W. T.
,
Lin
,
G.
, and
Zhang
,
Z.
,
2022
, “
Efficient Hybrid Explicit-Implicit Learning for Multiscale Problems
,”
J. Comput. Phys.
,
467
, p.
111326
.
2.
Qin
,
T.
,
Chen
,
Z.
,
Jakeman
,
J. D.
, and
Xiu
,
D.
,
2021
, “
Data-Driven Learning of Nonautonomous Systems
,”
SIAM J. Sci. Comput.
,
43
(
3
), pp.
A1607
A1624
.
3.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
15
), pp.
3932
3937
.
4.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Sparse Identification of Nonlinear Dynamics With Control (sindyc)
,”
IFAC-PapersOnLine
,
49
(
18
), pp.
710
715
.
5.
Schaeffer
,
H.
,
2017
, “
Learning Partial Differential Equations Via Data Discovery and Sparse Optimization
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2197
), p.
20160446
.
6.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
7.
Moya
,
C.
, and
Lin
,
G.
,
2023
, “
DAE-PINN: A Physics-Informed Neural Network Model for Simulating Differential Algebraic Equations With Application to Power Networks
,”
Neural Computi. Appl.
,
35
(
5
), pp.
1
16
.
8.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
9.
Qin
,
T.
,
Wu
,
K.
, and
Xiu
,
D.
,
2019
, “
Data Driven Governing Equations Approximation Using Deep Neural Networks
,”
J. Comput. Phys.
,
395
, pp.
620
635
.
10.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2018
, “
Multistep Neural Networks for Data-Driven Discovery of Nonlinear Dynamical Systems
,” arXiv preprint arXiv:1801.01236.
11.
Misyris
,
G. S.
,
Venzke
,
A.
, and
Chatzivasileiadis
,
S.
,
2020
, “
Physics-Informed Neural Networks for Power Systems
,”
2020 IEEE Power & Energy Society General Meeting (PESGM)
,
Montreal, QC, Canada
,
Aug. 2–6
,
IEEE
, pp.
1
5
.
12.
Lu
,
L.
,
Jin
,
P.
,
Pang
,
G.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E.
,
2021
, “
Learning Nonlinear Operators Via Deeponet Based on the Universal Approximation Theorem of Operators
,”
Nat. Mach. Intell.
,
3
(
3
), pp.
218
229
.
13.
Chen
,
T.
, and
Chen
,
H.
,
1995
, “
Universal Approximation to Nonlinear Operators by Neural Networks With Arbitrary Activation Functions and Its Application to Dynamical Systems
,”
IEEE Trans. Neural Netw.
,
6
(
4
), pp.
911
917
.
14.
Li
,
G.
,
Moya
,
C.
, and
Zhang
,
Z.
,
2022
, “
On Learning the Dynamical Response of Nonlinear Control Systems With Deep Operator Networks
,” arXiv preprint arXiv:2206.06536.
15.
Moya
,
C.
,
Zhang
,
S.
,
Yue
,
M.
, and
Lin
,
G.
,
2023
, “
Deeponet-Grid-UQ: A Trustworthy Deep Operator Framework for Predicting the Power Grid’s Post-Fault Trajectories
,”
Neurocomputing
,
535
, pp.
166
182
.
16.
Cai
,
S.
,
Wang
,
Z.
,
Lu
,
L.
,
Zaki
,
T. A.
, and
Karniadakis
,
G. E.
,
2021
, “
Deepm&Mnet: Inferring the Electroconvection Multiphysics Fields Based on Operator Approximation by Neural Networks
,”
J. Comput. Phys.
,
436
, p.
110296
.
17.
Wang
,
S.
, and
Perdikaris
,
P.
,
2021
, “
Long-Time Integration of Parametric Evolution Equations With Physics-Informed Deeponets
,”
J. Comput. Phys.
,
475
, p.
111855
.
18.
Lin
,
G.
,
Moya
,
C.
, and
Zhang
,
Z.
,
2021
, “
Accelerated Replica Exchange Stochastic Gradient Langevin Diffusion Enhanced Bayesian Deeponet for Solving Noisy Parametric PEDS
,” arXiv preprint arXiv:2111.02484.
19.
Yang
,
Y.
,
Kissas
,
G.
, and
Perdikaris
,
P.
,
2022
, “
Scalable Uncertainty Quantification for Deep Operator Networks Using Randomized Priors
,” arXiv preprint arXiv:2203.03048.
20.
Li
,
Z.
,
Kovachki
,
N.
,
Azizzadenesheli
,
K.
,
Liu
,
B.
,
Bhattacharya
,
K.
,
Stuart
,
A.
, and
Anandkumar
,
A.
,
2020
, “
Fourier Neural Operator for Parametric Partial Differential Equations
,” arXiv preprint arXiv:2010.08895.
21.
Kovachki
,
N.
,
Li
,
Z.
,
Liu
,
B.
,
Azizzadenesheli
,
K.
,
Bhattacharya
,
K.
,
Stuart
,
A.
, and
Anandkumar
,
A.
,
2021
, “
Neural Operator: Learning Maps Between Function Spaces
,” arXiv preprint arXiv:2108.08481.
22.
Zhang
,
Z.
,
Leung
,
W. T.
, and
Schaeffer
,
H.
,
2022
, “
Belnet: Basis Enhanced Learning, a Mesh-Free Neural Operator
,” arXiv preprint arXiv:2212.07336.
23.
Moya
,
C.
,
Lin
,
G.
,
Zhao
,
T.
, and
Yue
,
M.
,
2023
, “
On Approximating the Dynamic Response of Synchronous Generators via Operator Learning: A Step Towards Building Deep Operator-Based Power Grid Simulators
,” arXiv preprint arXiv:2301.12538.
24.
Cui
,
W.
,
Yang
,
W.
, and
Zhang
,
B.
,
2023
, “
A Frequency Domain Approach to Predict Power System Transients
,”
IEEE Trans. Power Syst.
, pp.
1
13
.
25.
Kasahara
,
H.
,
Fujii
,
H.
, and
Iwata
,
M.
,
1987
, “
Parallel Processing of Robot Motion Simulation
,”
IFAC Proceedings Vol.
,
20
(
5
), pp.
329
336
.
26.
Choi
,
H.
,
Crump
,
C.
,
Duriez
,
C.
,
Elmquist
,
A.
,
Hager
,
G.
,
Han
,
D.
,
Hearl
,
F.
,
Hodgins
,
J.
,
Jain
,
A.
,
Leve
,
F.
, and
Li
,
C.
,
2021
, “
On the Use of Simulation in Robotics: Opportunities, Challenges, and Suggestions for Moving Forward
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
1
), p.
e1907856118
.
27.
Henrich
,
D.
,
1997
, “
Fast Motion Planning by Parallel Processing—A Review
,”
J. Intell. Rob. Syst.
,
20
(
1
), pp.
45
69
.
28.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When, and How
,”
J. Comput. Nonlinear. Dyn.
,
9
(
4
), p.
041007
.
29.
Coelho
,
P.
, and
Nunes
,
U.
,
2005
, “
Path-Following Control of Mobile Robots in Presence of Uncertainties
,”
IEEE Trans. Rob.
,
21
(
2
), pp.
252
261
.
30.
Iserles
,
A.
,
2009
,
A First Course in the Numerical Analysis of Differential Equations
,
Vol. 44
,
Cambridge University Press
,
Cambridge, UK
.
31.
Jin
,
P.
,
Meng
,
S.
, and
Lu
,
L.
,
2022
, “
Mionet: Learning Multiple-Input Operators Via Tensor Product
,”
SIAM J. Sci. Comput.
,
44
(
6
), pp.
A3490
A3514
.
32.
Sun
,
Y.
,
Moya
,
C.
,
Lin
,
G.
, and
Yue
,
M.
,
2022
, “
Deepgraphonet: A Deep Graph Operator Network to Learn and Zero-Shot Transfer the Dynamic Response of Networked Systems
,” arXiv preprint arXiv:2209.10622.
33.
Michałowska
,
K.
,
Goswami
,
S.
,
Karniadakis
,
G. E.
, and
Riemer-Sørensen
,
S.
,
2023
, “
Neural Operator Learning for Long-Time Integration in Dynamical Systems With Recurrent Neural Networks
,” arXiv preprint arXiv:2303.02243.
34.
Moya
,
C.
, and
Lin
,
G.
,
2022
, “
Fed-deeponet: Stochastic Gradient-Based Federated Training of Deep Operator Networks
,”
Algorithms
,
15
(
9
), p.
325
.
You do not currently have access to this content.