Abstract

Extracting an individual’s scientific knowledge is essential for improving educational assessment and understanding cognitive tasks in engineering activities such as reasoning and decision-making. However, knowledge extraction is an almost impossible endeavor if the domain of knowledge and the available observational data are unrestricted. The objective of this paper is to quantify individuals’ theory-based causal knowledge from their responses to given questions. Our approach uses directed-acyclic graphs (DAGs) to represent causal knowledge for a given theory and a graph-based logistic model that maps individuals’ question-specific subgraphs to question responses. We follow a hierarchical Bayesian approach to estimate individuals’ DAGs from observations. The method is illustrated using 205 engineering students’ responses to questions on fatigue analysis in mechanical parts. In our results, we demonstrate how the developed methodology provides estimates of population-level DAG and DAGs for individual students. This dual representation is essential for remediation since it allows us to identify parts of a theory that a population or individual struggles with and parts they have already mastered. An addendum of the method is that it enables predictions about individuals’ responses to new questions based on the inferred individual-specific DAGs. The latter has implications for the descriptive modeling of human problem-solving, a critical ingredient in sociotechnical systems modeling.

References

1.
Millán
,
E.
,
DescalçO
,
L.
,
Castillo
,
G.
,
Oliveira
,
P.
, and
Diogo
,
S.
,
2013
, “
Using Bayesian Networks to Improve Knowledge Assessment
,”
Comput. Educ.
,
60
(
1
), pp.
436
447
.
2.
Conejo
,
R.
,
Guzmán
,
E.
,
Millán
,
E.
,
Trella
,
M.
,
Pérez-De-La-Cruz
,
J. L.
, and
Ríos
,
A.
,
2004
, “
Siette: A Web-Based Tool for Adaptive Testing
,”
Int. J. Artif. Intell. Educ.
,
14
(
1
), pp.
29
61
. https://dl.acm.org/doi/10.5555/1434852.1434855
3.
Desmarais
,
M. C.
, and
Pu
,
X.
,
2005
, “
A Bayesian Student Model Without Hidden Nodes and Its Comparison With Item Response Theory
,”
Int. J. Artif. Intell. Educ.
,
15
(
4
), pp.
291
323
. https://dl.acm.org/doi/10.5555/1434935.1434938
4.
Dorst
,
K.
,
2008
, “
Design Research: A Revolution-Waiting-to-Happen
,”
Des. Stud.
,
29
(
1
), pp.
4
11
.
5.
Wolmarans
,
N.
,
2016
, “
Inferential Reasoning in Design: Relations Between Material Product and Specialised Disciplinary Knowledge
,”
Des. Stud.
,
45
(Special Issue: Design Review Conversations), pp.
92
115
.
6.
Chaudhari
,
A. M.
,
Bilionis
,
I.
, and
Panchal
,
J. H.
,
2019
, “
Similarity in Engineering Design: A Knowledge-Based Approach
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
59278
,
American Society of Mechanical Engineers
,
Anaheim, CA
, Paper No. V007T06A045.
7.
Chaudhari
,
A. M.
,
Bilionis
,
I.
, and
Panchal
,
J. H.
,
2020
, “
Descriptive Models of Sequential Decisions in Engineering Design: An Experimental Study
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081704
.
8.
Griffiths
,
T. L.
, and
Tenenbaum
,
J. B.
,
2009
, “
Theory-Based Causal Induction.
,”
Psychol. Rev.
,
116
(
4
), p.
661
.
9.
Lake
,
B. M.
,
Ullman
,
T. D.
,
Tenenbaum
,
J. B.
, and
Gershman
,
S. J.
,
2017
, “
Building Machines That Learn and Think Like People
,”
Behav. Brain Sci.
,
40
, p.
E253
.
10.
De Ayala
,
R. J.
,
2013
,
The Theory and Practice of Item Response Theory
,
Guilford Publications
,
New York
.
11.
Xenos
,
M.
,
2004
, “
Prediction and Assessment of Student Behaviour in Open and Distance Education in Computers Using Bayesian Networks
,”
Comput. Educ.
,
43
(
4
), pp.
345
359
.
12.
Conati
,
C.
,
2010
,
Bayesian Student Modeling
,
Springer
,
Berlin/Heidelberg
, pp.
281
299
.
13.
Beck
,
J. E.
,
Chang
,
K. -M.
,
Mostow
,
J.
, and
Corbett
,
A.
, “
Does Help Help? Introducing the Bayesian Evaluation and Assessment Methodology
,”
International Conference on Intelligent Tutoring Systems
,
Montreal, Canada
,
June 23–27
, Springer, Berlin/Heidelberg, pp.
383
394
.
14.
Millán
,
E.
, and
Pérez-De-La-Cruz
,
J. L.
,
2002
, “
A Bayesian Diagnostic Algorithm for Student Modeling and Its Evaluation
,”
User Model. User-Adapted Interaction
,
12
(
2–3
), pp.
281
330
.
15.
Millán
,
E.
,
Loboda
,
T.
, and
Pérez-De-La-Cruz
,
J. L.
,
2010
, “
Bayesian Networks for Student Model Engineering
,”
Comput. Educ.
,
55
(
4
), pp.
1663
1683
.
16.
Käser
,
T.
,
Klingler
,
S.
,
Schwing
,
A. G.
, and
Gross
,
M.
,
2017
, “
Dynamic Bayesian Networks for Student Modeling
,”
IEEE Trans. Learn. Technol.
,
10
(
4
), pp.
450
462
.
17.
Hans
,
A.
,
Chaudhari
,
A. M.
,
Bilionis
,
I.
, and
Panchal
,
J. H.
,
2020
, “
Quantifying Individuals’ Theory-Based Knowledge Using Probabilistic Causal Graphs: A Bayesian Hierarchical Approach
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
83921
,
American Society of Mechanical Engineers
,
Virtual
, Paper No. V003T03A014.
18.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2008
,
Shigley’s Mechanical Engineering Design
, Vol.
8
.
McGraw-Hill
,
New York
.
19.
Sriram
,
R. D.
,
2012
,
Intelligent Systems for Engineering: A Knowledge-Based Approach
,
Springer
,
London
.
20.
Furini
,
F.
,
Rai
,
R.
,
Smith
,
B.
,
Colombo
,
G.
, and
Krovi
,
V.
,
2016
, “
Development of a Manufacturing Ontology for Functionally Graded Materials
,”
Vol. 1B: 36th Computers and Information in Engineering Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
American Society of Mechanical Engineers
, Paper No. V01BT02A030.
21.
Ming
,
Z.
,
Nellippallil
,
A. B.
,
Yan
,
Y.
,
Wang
,
G.
,
Goh
,
C. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
PDSIDES—A Knowledge-Based Platform for Decision Support in the Design of Engineering Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041001
.
22.
Chandrasegaran
,
S. K.
,
Ramani
,
K.
,
Sriram
,
R. D.
,
Horváth
,
I.
,
Bernard
,
A.
,
Harik
,
R. F.
, and
Gao
,
W.
,
2013
, “
The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems
,”
Comput.-Aided Des.
,
45
(
2
), pp.
204
228
.
23.
Wu
,
D.
, and
Gary Wang
,
G.
,
2020
, “
Knowledge-Assisted Optimization for Large-Scale Design Problems: A Review and Proposition
,”
ASME J. Mech. Des.
,
142
(
1
), p.
010801
.
24.
Dong
,
A.
, and
Sarkar
,
S.
,
2014
, “Generalized Design Knowledge and the Higher-Order Singular Value Decomposition,”
Design Computing and Cognition'12
,
J. Gero, ed.
,
Springer
,
Dordrecht
, pp.
415
432
.
25.
Rebhuhn
,
C.
,
Gilchrist
,
B.
,
Oman
,
S.
,
Tumer
,
I.
,
Stone
,
R.
, and
Tumer
,
K.
,
2014
, “A Multiagent Approach to Identifying Innovative Component Selection,”
Design Computing and Cognition '14
,
J.
Gero
, and
S.
Hanna
, eds.,
Springer
,
Cham
, pp.
227
244
.
26.
Siddharth
,
L.
,
Blessing
,
L.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Engineering Knowledge Graph From Patent Database
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021008
.
27.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Functional and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
.
28.
Lord
,
F. M.
, and
Novick
,
M. R.
,
2008
,
Statistical Theories of Mental Test Scores
,
IAP
,
Charlotte
.
29.
Self
,
J. A.
,
1994
, “Formal Approaches to Student Modelling,”
Student Modelling: The Key to Individualized Knowledge-Based Instruction
,
J. E.
Greer
, and
G. I.
McCalla
, eds., Vol.
125
,
Springer
,
Berlin/Heidelberg
, pp.
295
352
.
30.
Hestenes
,
D.
,
Wells
,
M.
, and
Swackhamer
,
G.
,
1992
, “
Force Concept Inventory
,”
Phys. Teacher
,
30
(
3
), pp.
141
158
.
31.
Reckase
,
M. D.
,
2009
, “Multidimensional Item Response Theory Models,”
Multidimensional Item Response Theory. Statistics for Social and Behavioral Sciences
,
Springer
,
New York
, pp.
79
112
.
32.
Tenenbaum
,
J. B.
,
Griffiths
,
T. L.
, and
Kemp
,
C.
,
2006
, “
Theory-Based Bayesian Models of Inductive Learning and Reasoning
,”
Trends Cogn. Sci.
,
10
(
7
), pp.
309
318
.
33.
Tenenbaum
,
J. B.
, and
Griffiths
,
T. L.
,
2001
, “
Generalization, Similarity, and Bayesian Inference
,”
Behav. Brain Sci.
,
24
(
4
), pp.
629
640
.
34.
Pearl
,
J.
,
2009
, “
Causal Inference in Statistics: An Overview
,”
Stat. Surv.
,
3
, pp.
96
146
.
35.
Bernardo
,
J.
,
Bayarri
,
M.
,
Berger
,
J.
,
Dawid
,
A.
,
Heckerman
,
D.
,
Smith
,
A.
, and
West
,
M.
,
2002
, “
Non-Centered Parameterisations for Hierarchical Models and Data Augmentation
,”
Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting
,
Tenerife, Canary Islands
,
June 2–6
, pp.
307
326
.
36.
Goudie
,
R. J.
, and
Mukherjee
,
S.
,
2016
, “
A Gibbs Sampler for Learning Dags
,”
J. Mach. Learn. Res.
,
17
(
1
), pp.
1032
1070
. http://jmlr.org/papers/v17/14-486.html
37.
Hoffman
,
M. D.
, and
Gelman
,
A.
,
2014
, “
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
1593
1623
. https://dl.acm.org/doi/10.5555/2627435.2638586
38.
Salvatier
,
J.
,
Wiecki
,
T. V.
, and
Fonnesbeck
,
C.
,
2016
, “
Probabilistic Programming in Python Using Pymc3
,”
PeerJ Comput. Sci.
,
2
, p.
e55
.
39.
Gelman
,
A.
,
Hwang
,
J.
, and
Vehtari
,
A.
,
2014
, “
Understanding Predictive Information Criteria for Bayesian Models
,”
Stat. Comput.
,
24
(
6
), pp.
997
1016
.
40.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
,
Dunson
,
D. B.
,
Vehtari
,
A.
, and
Rubin
,
D. B.
,
2013
,
Bayesian Data Analysis
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
41.
Bloom
,
B. S.
,
1984
, “
The 2 Sigma Problem: The Search for Methods of Group Instruction As Effective As One-to-One Tutoring
,”
Educ. Res.
,
13
(
6
), pp.
4
16
.
42.
Nwana
,
H. S.
,
1990
, “
Intelligent Tutoring Systems: An Overview
,”
Artif. Intell. Rev.
,
4
(
4
), pp.
251
277
.
43.
Ueno
,
M.
, and
Miyazawa
,
Y.
,
2017
, “
Irt-Based Adaptive Hints to Scaffold Learning in Programming
,”
IEEE Trans. Learn. Technol.
,
11
(
4
), pp.
415
428
.
44.
Reye
,
J.
,
2004
, “
Student Modelling Based on Belief Networks
,”
Int. J. Artif. Intell. Educ.
,
14
(
1
), pp.
63
96
. https://dl.acm.org/doi/10.5555/1434852.1434856
45.
Manske
,
M.
, and
Conati
,
C.
,
2005
, “
Modelling Learning in an Educational Game
,”
Artificial Intelligence in Education
, Amsterdam, The Netherlands.
46.
Cross
,
N.
,
2004
, “
Expertise in Design: An Overview
,”
Des. Stud.
,
25
(
5
), pp.
427
441
.
47.
Simpson
,
T. W.
,
Frecker
,
M.
,
Barton
,
R. R.
, and
Rothrock
,
L.
,
2007
, “
Graphical and Text-Based Design Interfaces for Parameter Design of an I-Beam, Desk Lamp, Aircraft Wing, and Job Shop Manufacturing System
,”
Eng. Comput.
,
23
(
2
), p.
93
.
48.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2012
,
Decision-Based Design: Integrating Consumer Preferences Into Engineering Design
,
Springer Science & Business Media
,
London
.
49.
Heit
,
E.
,
2007
, “What Is Induction and Why Study It?”
Inductive Reasoning: Experimental, Developmental, and Computational Approaches
,
A.
Feeney
, and
E.
Heit
, eds.,
Cambridge University Press
,
New York
, pp.
1
24
.
50.
Mislevy
,
R. J.
, and
Gitomer
,
D. H.
,
1995
, “
The Role of Probability-Based Inference in an Intelligent Tutoring System
,”
ETS Res. Rep. Ser.
,
1995
(
2
), pp.
i
27
.
You do not currently have access to this content.