Abstract

In this work, we investigate a signal estimation problem which is common and critical for durability design of vehicle bodies. The relation between the frequency responses of accelerometers is the target to model so that the ones of easy-to-measure accelerometers can estimate the responses of hard-to-measure accelerometers. A piecewise linear frequency-domain identification method relying on finite impulse response (FIR) models is proposed and performed to tackle the nonlinearity issue in the signal estimation problems: first, the interesting frequency range is segmented into three subranges which are clearly identified by peak histograms of frequency signals. Then, FIR models which provide a satisfactory description of the system are constructed to estimate the frequency responses of the interesting signals at subranges, one for each. The performance of the proposed approach is validated by using real-world data under multiple working conditions. The results show that the proposed method has a good estimation accuracy, and it brings the benefit that the number of accelerometers can be significantly reduced during the durability design of vehicle bodies.

References

1.
Risaliti
,
E.
,
Tamarozzi
,
T.
,
Vermaut
,
M.
,
Cornelis
,
B.
, and
Desmet
,
W.
,
2019
, “
Multibody Model Based Estimation of Multiple Loads and Strain Field on a Vehicle Suspension System
,”
Mech. Syst. Signal Process.
,
123
, pp.
1
25
.
2.
El-kafafy
,
M.
,
Csurcsia
,
P.
,
Cornelis
,
B.
,
Enrico
,
R.
, and
Janssens
,
K.
,
2020
, “
Machine Learning and System Identification for the Estimation of Data-Driven Models: An Experimental Case Study Illustrated on a Tire-Suspension System
,”
Proceedings of the International Conference on Noise and Vibration Engineering (ISMA)
,
Leuven, Belgium
,
October
,
KU Leuven
, pp.
3287
3301
.
3.
Chung
,
H.
,
North
,
C.
, and
Ferris
,
J.
,
2013
, “
Developing Large High-Resolution Display Visualizations of High-Fidelity Terrain Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
3
), p.
034502
.
4.
Jiang
,
Y.
,
Yun
,
G. J.
,
Zhao
,
L.
, and
Tao
,
J.
,
2015
, “
Experimental Design and Validation of an Accelerated Random Vibration Fatigue Testing Methodology
,”
Shock Vib.
,
2015
, p.
147871
.
5.
Kadlec
,
P.
,
Gabrys
,
B.
, and
Strandt
,
S.
,
2009
, “
Data-Driven Soft Sensors in the Process Industry
,”
Comput. Chem. Eng.
,
33
(
4
), pp.
795
814
.
6.
Kaneko
,
H.
, and
Funatsu
,
K.
,
2012
, “Estimation of Predictive Accuracy of Soft Sensor Models Based on One-Class Support Vector Machine,”
Computer Aided Chemical Engineering
,
I. A.
Karimi
and
R.
Srinivasan
, eds., Vol.
31
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
1246
1250
.
7.
Wang
,
D.
,
Gong
,
J.
,
Kang
,
Q.
,
Fan
,
D.
, and
Yang
,
J.
,
2019
, “
Soft Sensing for Gas-Condensate Field Production Using Parallel-Genetic-Algorithm-Based Data Reconciliation
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
044501
.
8.
Jennings
,
M.
, and
Rangan
,
R.
,
2004
, “
Managing Complex Vehicle System Simulation Models for Automotive System Development
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
4
), pp.
372
378
.
9.
Zhou
,
S.
,
Song
,
G.
,
Sun
,
M.
, and
Ren
,
Z.
,
2016
, “
Nonlinear Dynamic Analysis of a Quarter Vehicle System With External Periodic Excitation
,”
Int. J. Non-Linear Mech.
,
84
, pp.
82
93
.
10.
Zhu
,
Q.
, and
Ishitobi
,
M.
,
2006
, “
Chaotic Vibration of a Nonlinear Full-Vehicle Model
,”
Int. J. Solids Struct.
,
43
(
3–4
), pp.
747
759
.
11.
Wang
,
G.
, and
Yin
,
S.
,
2014
, “
Data-Driven Fault Diagnosis for an Automobile Suspension System by Using a Clustering Based Method
,”
J. Franklin Inst.
,
351
(
6
), pp.
3231
3244
.
12.
Dao
,
T.-K.
, and
Chen
,
C.-K.
,
2011
, “
Path Tracking Control of a Motorcycle Based on System Identification
,”
IEEE Trans. Veh. Technol.
,
60
(7), pp.
2927
2935
.
13.
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Steuben
,
J. C.
, and
DeGiorgi
,
V.
,
2018
, “
On the Multiphysics Modeling of Surface Aging Under Cathodic Protection
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031001
.
14.
Guo
,
J.
,
He
,
H.
, and
Sun
,
C.
,
2019
, “
Arima-Based Road Gradient and Vehicle Velocity Prediction for Hybrid Electric Vehicle Energy Management
,”
IEEE Trans. Veh. Technol.
,
68
(6), pp.
5309
5320
.
15.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050902
.
16.
Sliwa
,
B.
, and
Wietfeld
,
C.
,
2019
, “
Towards Data-Driven Simulation of End-to-End Network Performance Indicators
,”
2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)
,
Honolulu, HI
,
Sept. 22–25
, pp.
1
7
.
17.
Irshad
,
L.
,
Demirel
,
H. O.
, and
Tumer
,
I. Y.
,
2020
, “
Automated Generation of Fault Scenarios to Assess Potential Human Errors and Functional Failures in Early Design Stages
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051009
.
18.
Wang
,
Y.-Y.
,
Sun
,
Y.
,
Chang
,
C.-F.
, and
Hu
,
Y.
,
2016
, “
Model-Based Fault Detection and Fault-Tolerant Control of SCR Urea Injection Systems
,”
IEEE Trans. Veh. Technol.
,
65
(6), pp.
4645
4654
.
19.
Tosyali
,
A.
,
Song
,
R.
,
Guo
,
W.
,
Abolhassani
,
A.
, and
Kalamdani
,
R.
,
2021
, “
Data-Driven Gantry Health Monitoring and Process Status Identification Based on Texture Extraction
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
1
), p.
011003
.
20.
Linder
,
J.
, and
Enqvist
,
M.
,
2017
, “
Identification of Systems With Unknown Inputs Using Indirect Input Measurements
,”
Int. J. Control
,
90
(
4
), pp.
729
745
.
21.
Aljanaideh
,
K. F.
, and
Bernstein
,
D. S.
,
2015
, “
Time-Domain Analysis of Sensor-to-Sensor Transmissibility Operators
,”
Automatica
,
53
, pp.
312
319
.
22.
Yan
,
W.-J.
,
Zhao
,
M.-Y.
,
Sun
,
Q.
, and
Ren
,
W.-X.
,
2019
, “
Transmissibility-Based System Identification for Structural Health Monitoring: Fundamentals, Approaches, and Applications
,”
Mech. Syst. Signal Process.
,
117
, pp.
453
482
.
23.
Aljanaideh
,
K. F.
, and
Bernstein
,
D. S.
,
2017
, “
A Behavioral Equation Framework for Time-Domain Transmissibilities
,”
Automatica
,
78
, pp.
20
24
.
24.
Khalil
,
A.
, and
Aljanaideh
,
K. F.
,
2018
, “
Aircraft Structural Health Monitoring Using Transmissibility Identification
,”
IFAC-PapersOnLine
,
51
(
15
), pp.
969
974
.
25.
Aljanaideh
,
K. F.
, and
Bernstein
,
D. S.
,
2020
, “
Output-Only Identification of Input–Output Models
,”
Automatica
,
113
, p.
108686
.
26.
Gao
,
F.
, and
Nallanathan
,
A.
,
2008
, “
Resolving Multidimensional Ambiguity in Blind Channel Estimation of MIMO-FIR Systems Via Block Precoding
,”
IEEE Trans. Veh. Technol.
,
57
(
1
), pp.
11
21
.
27.
Liu
,
J.
,
2009
, “
Be Cautious When Using the FIR Channel Model With the OFDM-Based Communication Systems
,”
IEEE Trans. Veh. Technol.
,
58
(
3
), pp.
1607
1612
.
28.
de Lamare
,
R. C.
, and
Sampaio-Neto
,
R.
,
2007
, “
Adaptive Interference Suppression for DS-CDMA Systems Based on Interpolated FIR Filters With Adaptive Interpolators in Multipath Channels
,”
IEEE Trans. Veh. Technol.
,
56
(
5
), pp.
2457
2474
.
29.
Soverini
,
U.
, and
Söderström
,
T.
,
2020
, “
Frequency Domain Identification of FIR Models in the Presence of Additive Input–Output Noise
,”
Automatica
,
115
, p.
108879
.
30.
Colin
,
K.
,
Bombois
,
X.
,
Bako
,
L.
, and
Morelli
,
F.
,
2019
, “
Informativity: How to Get Just Sufficiently Rich for the Identification of MISO FIR Systems With Multisine Excitation
,”
2019 18th European Control Conference (ECC)
,
Naples, Italy
,
August
, pp.
351
356
.
31.
Kukreja
,
S. L.
, and
Bernstein
,
D. S.
,
2012
,
Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft
, Technical Report,
NASA Armstrong Flight Research Center
.
32.
Lennart
,
L.
,
1999
,
System Identification: Theory for the User
,
PTR Prentice Hall
,
Upper Saddle River, NJ
, pp.
1
14
.
33.
Pintelon
,
R.
, and
Schoukens
,
J.
,
2012
,
System Identification: A Frequency Domain Approach
,
IEEE
,
New York
34.
Magnus
,
J. R.
, and
Neudecker
,
H.
,
2019
,
Matrix Differential Calculus With Applications in Statistics and Econometrics
,
Wiley
,
Hoboken, NJ
.
35.
Kueiming
,
L.
,
Wook
,
H.K.
,
2002
, “
A New Identification Approach for FIR Models
,”
IEEE Trans. Circuits Syst. II: Analog Digital Signal Process
,
49
(
6
), pp.
439
446
.
36.
Ljung
,
L.
, and
Chen
,
T.
,
2013
, “
What Can Regularization Offer for Estimation of Dynamical Systems?
,”
11th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP13), July 3–5, Caen, France, IFAC
, pp.
1
8
.
37.
Chen
,
T.
, and
Ljung
,
L.
,
2013
, “
Implementation of Algorithms for Tuning Parameters in Regularized Least Squares Problems in System Identification
,”
Automatica
,
49
(
7
), pp.
2213
2220
.
38.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J.-C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
.
39.
Ljung
,
L.
,
1995
,
System Identification Toolbox: User’s Guide
, Citeseer.
40.
Raghavendra
,
M.
, and
Giridhar
,
K.
,
2004
, “
Improving Channel Estimation in OFDM Systems for Sparse Multipath Channels
,”
IEEE Signal Process. Lett.
,
12
(
1
), pp.
52
55
.
41.
Raghavendra
,
M.
,
Bhashyam
,
S.
, and
Giridhar
,
K.
,
2005
, “
Exploiting Hopping Pilots for Parametric Channel Estimation in OFDM Systems
,”
IEEE Signal Process. Lett.
,
12
(
11
), pp.
737
740
.
42.
Xie
,
H.
,
Andrieux
,
G.
,
Wang
,
Y.
,
Diouris
,
J.-F.
, and
Feng
,
S.
,
2014
, “
Efficient Time Domain Threshold for Sparse Channel Estimation in OFDM System
,”
AEU-Int. J. Electron. Commun.
,
68
(
4
), pp.
277
281
.
You do not currently have access to this content.