Abstract

Physics-constrained machine learning is emerging as an important topic in the field of machine learning for physics. One of the most significant advantages of incorporating physics constraints into machine learning methods is that the resulting model requires significantly less data to train. By incorporating physical rules into the machine learning formulation itself, the predictions are expected to be physically plausible. Gaussian process (GP) is perhaps one of the most common methods in machine learning for small datasets. In this paper, we investigate the possibility of constraining a GP formulation with monotonicity on three different material datasets, where one experimental and two computational datasets are used. The monotonic GP is compared against the regular GP, where a significant reduction in the posterior variance is observed. The monotonic GP is strictly monotonic in the interpolation regime, but in the extrapolation regime, the monotonic effect starts fading away as one goes beyond the training dataset. Imposing monotonicity on the GP comes at a small accuracy cost, compared to the regular GP. The monotonic GP is perhaps most useful in applications where data are scarce and noisy, and monotonicity is supported by strong physical evidence.

References

1.
National Science and Technology Council (US)
,
2011
,
Materials Genome Initiative for Global Competitiveness
,
Executive Office of the President, National Science and Technology Council
,
Washington, DC
.
2.
Cordero
,
Z. C.
,
Knight
,
B. E.
, and
Schuh
,
C. A.
,
2016
, “
Six Decades of the Hall–Petch Effect—A Survey of Grain-Size Strengthening Studies on Pure Metals
,”
Int. Mater. Rev.
,
61
(
8
), pp.
495
512
.
3.
Tallman
,
A. E.
,
Stopka
,
K. S.
,
Swiler
,
L. P.
,
Wang
,
Y.
,
Kalidindi
,
S. R.
, and
McDowell
,
D. L.
,
2019
, “
Gaussian-Process-Driven Adaptive Sampling for Reduced-Order Modeling of Texture Effects in Polycrystalline Alpha-Ti
,”
JOM
,
71
(
8
), pp.
2646
2656
.
4.
Tallman
,
A. E.
,
Swiler
,
L. P.
,
Wang
,
Y.
, and
McDowell
,
D. L.
,
2020
, “
Uncertainty Propagation in Reduced Order Models Based on Crystal Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
365
, p.
113009
.
5.
Yabansu
,
Y. C.
,
Iskakov
,
A.
,
Kapustina
,
A.
,
Rajagopalan
,
S.
, and
Kalidindi
,
S. R.
,
2019
, “
Application of Gaussian Process Regression Models for Capturing the Evolution of Microstructure Statistics in Aging of Nickel-Based Superalloys
,”
Acta Mater.
,
178
, pp.
45
58
.
6.
Tran
,
A.
, and
Wildey
,
T.
,
2020
, “
Solving Stochastic Inverse Problems for Property–Structure Linkages Using Data-Consistent Inversion and Machine Learning
,”
JOM
,
73
(
1
), pp.
72
89
.
7.
Tran
,
A.
, and
Wildey
,
T.
,
2021
, “
Solving Stochastic Inverse Problems for Property–Structure Linkages Using Data-Consistent Inversion
,”
TMS 2021 150th Annual Meeting & Exhibition
,
Virtual
,
Springer
, pp.
1
8
.
8.
Tran
,
A.
,
Tranchida
,
J.
,
Wildey
,
T.
, and
Thompson
,
A. P.
,
2020
, “
Multi-Fidelity Machine-Learning With Uncertainty Quantification and Bayesian Optimization for Materials Design: Application to Ternary Random Alloys
,”
J. Chem. Phys.
,
153
(
7
), p.
074705
.
9.
Khatamsaz
,
D.
,
Molkeri
,
A.
,
Couperthwaite
,
R.
,
James
,
J.
,
Arróyave
,
R.
,
Allaire
,
D.
, and
Srivastava
,
A.
,
2021
, “
Efficiently Exploiting Process–Structure–Property Relationships in Material Design by Multi-information Source Fusion
,”
Acta Mater.
,
206
, p.
116619
.
10.
Fernández-Godino
,
M. G.
,
Balachandar
,
S.
, and
Haftka
,
R.
,
2018
, “
On the Use of Symmetries in Building Surrogate Models
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061402
.
11.
Jidling
,
C.
,
Wahlström
,
N.
,
Wills
,
A.
, and
Schön
,
T. B.
,
2017
, “
Linearly Constrained Gaussian Processes
,” arXiv preprint arXiv:1703.00787.
12.
Agrell
,
C.
,
2019
, “
Gaussian Processes With Linear Operator Inequality Constraints
,” arXiv preprint arXiv:1901.03134.
13.
Lange-Hegermann
,
M.
,
2021
, “
Linearly Constrained Gaussian Processes With Boundary Conditions
,”
International Conference on Artificial Intelligence and Statistics
,
Virtual
,
PMLR
, pp.
1090
1098
.
14.
Swiler
,
L. P.
,
Gulian
,
M.
,
Frankel
,
A. L.
,
Safta
,
C.
, and
Jakeman
,
J. D.
,
2020
, “
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
,”
J. Mach. Learn. Model. Comput.
,
1
(
2
), pp.
119
156
.
15.
Riihimäki
,
J.
, and
Vehtari
,
A.
,
2010
, “
Gaussian Processes With Monotonicity Information
,”
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings
,
Sardinia, Italy
,
May 13–15
, pp.
645
652
.
16.
Golchi
,
S.
,
Bingham
,
D. R.
,
Chipman
,
H.
, and
Campbell
,
D. A.
,
2015
, “
Monotone Emulation of Computer Experiments
,”
SIAM/ASA J. Uncertainty Quantif.
,
3
(
1
), pp.
370
392
.
17.
Ustyuzhaninov
,
I.
,
Kazlauskaite
,
I.
,
Ek
,
C. H.
, and
Campbell
,
N.
,
2020
, “
Monotonic Gaussian Process Flows
,”
International Conference on Artificial Intelligence and Statistics
,
Virtual
,
PMLR
, pp.
3057
3067
.
18.
Pensoneault
,
A.
,
Yang
,
X.
, and
Zhu
,
X.
,
2020
, “
Nonnegativity-Enforced Gaussian Process Regression
,”
Theor. Appl. Mech. Lett.
,
10
(
3
), pp.
182
187
.
19.
Tan
,
M. H. Y.
,
2017
, “
Monotonic Metamodels for Deterministic Computer Experiments
,”
Technometrics
,
59
(
1
), pp.
1
10
.
20.
Chen
,
Y.
,
Hosseini
,
B.
,
Owhadi
,
H.
, and
Stuart
,
A. M.
,
2021
, “
Solving and Learning Nonlinear PDEs With Gaussian Processes
,”
J. Comput. Phys.
,
447
, p.
110668
.
21.
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes in Machine Learning
,
MIT Press
,
London, UK
.
22.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
de Freitas
,
N.
,
2016
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
23.
Vanhatalo
,
J.
,
Riihimäki
,
J.
,
Hartikainen
,
J.
,
Jylänki
,
P.
,
Tolvanen
,
V.
, and
Vehtari
,
A.
,
2012
, “
Bayesian Modeling With Gaussian Processes Using the GPstuff Toolbox
,” arXiv preprint arXiv:1206.5754.
24.
Vanhatalo
,
J.
,
Riihimäki
,
J.
,
Hartikainen
,
J.
,
Jylänki
,
P.
,
Tolvanen
,
V.
, and
Vehtari
,
A.
,
2013
, “
GPstuff: Bayesian Modeling With Gaussian Processes
,”
J. Mach. Learn. Res.
,
14
, pp.
1175
1179
.
25.
Tran
,
A.
,
Wildey
,
T.
, and
McCann
,
S.
,
2020
, “
sMF-BO-2CoGP: A Sequential Multi-fidelity Constrained Bayesian Optimization for Design Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031007
.
26.
Yang
,
X.
,
Zhu
,
X.
, and
Li
,
J.
,
2020
, “
When Bifidelity Meets CoKriging: An Efficient Physics-Informed Multifidelity Method
,”
SIAM J. Sci. Comput.
,
42
(
1
), pp.
A220
A249
.
27.
Xiao
,
M.
,
Zhang
,
G.
,
Breitkopf
,
P.
,
Villon
,
P.
, and
Zhang
,
W.
,
2018
, “
Extended Co-kriging Interpolation Method Based on Multi-fidelity Data
,”
Appl. Math. Comput.
,
323
, pp.
120
131
.
28.
Minka
,
T. P.
,
2001
, “
Expectation Propagation for Approximate Bayesian Inference
,”
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence
,
Seattle, WA
,
Aug. 2–5
,
AUAI Press
, pp.
362
369
.
29.
Kuss
,
M.
,
Rasmussen
,
C. E.
, and
Herbrich
,
R.
,
2005
, “
Assessing Approximate Inference for Binary Gaussian Process Classification
,”
J. Mach. Learn. Res.
,
6
(
10
), pp.
1679
1704
.
30.
Counts
,
W. A.
,
Braginsky
,
M. V.
,
Battaile
,
C. C.
, and
Holm
,
E. A.
,
2008
, “
Predicting the Hall–Petch Effect in Fcc Metals Using Non-local Crystal Plasticity
,”
Int. J. Plast.
,
24
(
7
), pp.
1243
1263
.
31.
Fernandes
,
J.
, and
Vieira
,
M.
,
2000
, “
Further Development of the Hybrid Model for Polycrystal Deformation
,”
Acta Mater.
,
48
(
8
), pp.
1919
1930
.
32.
Karolczuk
,
A.
, and
Słoński
,
M.
,
2022
, “
Application of the Gaussian Process for Fatigue Life Prediction Under Multiaxial Loading
,”
Mech. Syst. Signal Process.
,
167
, p.
108599
.
33.
Karolczuk
,
A.
, and
Kluger
,
K.
,
2020
, “
Application of Life-Dependent Material Parameters to Lifetime Calculation Under Multiaxial Constant-and Variable-Amplitude Loading
,”
Int. J. Fatigue
,
136
, p.
105625
.
34.
Arróyave
,
R.
, and
McDowell
,
D. L.
,
2019
, “
Systems Approaches to Materials Design: Past, Present, and Future
,”
Annu. Rev. Mater. Res.
,
49
(
1
), pp.
103
126
.
35.
Zhu
,
C.
,
Byrd
,
R. H.
,
Lu
,
P.
, and
Nocedal
,
J.
,
1997
, “
Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization
,”
ACM Trans. Math. Softw. (TOMS)
,
23
(
4
), pp.
550
560
.
36.
Garcia
,
A. L.
,
Tikare
,
V.
, and
Holm
,
E. A.
,
2008
, “
Three-Dimensional Simulation of Grain Growth in a Thermal Gradient With Non-uniform Grain Boundary Mobility
,”
Scr. Mater.
,
59
(
6
), pp.
661
664
.
37.
Plimpton
,
S.
,
Battaile
,
C.
,
Chandross
,
M.
,
Holm
,
L.
,
Thompson
,
A.
,
Tikare
,
V.
,
Wagner
,
G.
, et al.,
2009
, “
Crossing the Mesoscale No-Man’s Land Via Parallel Kinetic Monte Carlo
,” Sandia Report SAND2009-6226.
38.
Anderson
,
M.
,
Grest
,
G.
, and
Srolovitz
,
D.
,
1989
, “
Computer Simulation of Normal Grain Growth in Three Dimensions
,”
Philos. Mag. B
,
59
(
3
), pp.
293
329
.
39.
Tran
,
A.
,
Mitchell
,
J. A.
,
Swiler
,
L. P.
, and
Wildey
,
T.
,
2020
, “
An Active-Learning High-Throughput Microstructure Calibration Framework for Process–Structure Linkage in Materials Informatics
,”
Acta Mater.
,
194
, pp.
80
92
.
40.
Steinmetz
,
D. R.
,
Jäpel
,
T.
,
Wietbrock
,
B.
,
Eisenlohr
,
P.
,
Gutierrez-Urrutia
,
I.
,
Saeed-Akbari
,
A.
,
Hickel
,
T.
,
Roters
,
F.
, and
Raabe
,
D.
,
2013
, “
Revealing the Strain-Hardening Behavior of Twinning-Induced Plasticity Steels: Theory, Simulations, Experiments
,”
Acta Mater.
,
61
(
2
), pp.
494
510
.
41.
Roters
,
F.
,
Diehl
,
M.
,
Shanthraj
,
P.
,
Eisenlohr
,
P.
,
Reuber
,
C.
,
Wong
,
S. L.
,
Maiti
,
T.
, et al.,
2019
, “
DAMASK—The Düsseldorf Advanced Material Simulation Kit for Modeling Multi-physics Crystal Plasticity, Thermal, and Damage Phenomena From the Single Crystal Up to the Component Scale
,”
Comput. Mater. Sci.
,
158
, pp.
420
478
.
42.
Wong
,
S. L.
,
Madivala
,
M.
,
Prahl
,
U.
,
Roters
,
F.
, and
Raabe
,
D.
,
2016
, “
A Crystal Plasticity Model for Twinning-and Transformation-Induced Plasticity
,”
Acta Mater.
,
118
, pp.
140
151
.
43.
Kalidindi
,
S. R.
,
1998
, “
Incorporation of Deformation Twinning in Crystal Plasticity Models
,”
J. Mech. Phys. Solids
,
46
(
2
), pp.
267
290
.
44.
Blum
,
W.
, and
Eisenlohr
,
P.
,
2009
, “
Dislocation Mechanics of Creep
,”
Mater. Sci. Eng. A
,
510
, pp.
7
13
.
45.
Groeber
,
M. A.
, and
Jackson
,
M. A.
,
2014
, “
DREAM. 3D: A Digital Representation Environment for the Analysis of Microstructure in 3D
,”
Integr. Mater. Manuf. Innovation
,
3
(
1
), p.
5
.
46.
Diehl
,
M.
,
Groeber
,
M.
,
Haase
,
C.
,
Molodov
,
D. A.
,
Roters
,
F.
, and
Raabe
,
D.
,
2017
, “
Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach
,”
JOM
,
69
(
5
), pp.
848
855
.
47.
Abhyankar
,
S.
,
Brown
,
J.
,
Constantinescu
,
E. M.
,
Ghosh
,
D.
,
Smith
,
B. F.
, and
Zhang
,
H.
,
2018
, “
PETSc/TS: A Modern Scalable ODE/DAE Solver Library
,” arXiv preprint arXiv:1806.01437.
48.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
,
Dalcin
,
L.
, et al.,
2019
, “
PETSc Users Manual
.”
49.
Benzing
,
J. T.
,
Poling
,
W. A.
,
Pierce
,
D. T.
,
Bentley
,
J.
,
Findley
,
K. O.
,
Raabe
,
D.
, and
Wittig
,
J. E.
,
2018
, “
Effects of Strain Rate on Mechanical Properties and Deformation Behavior of an Austenitic Fe–25Mn–3Al–3Si TWIP-TRIP Steel
,”
Mater. Sci. Eng. A
,
711
, pp.
78
92
.
50.
Singh
,
L.
,
Vohra
,
S.
, and
Sharma
,
M.
,
2021
, “
Investigation of Strain Rate Behavior of Aluminium and AA2024 Using Crystal Plasticity
,”
Mater. Today: Proc.
,
50
, pp.
2345
2350
.
51.
Acar
,
P.
,
2021
, “
Recent Progress of Uncertainty Quantification in Small-Scale Materials Science
,”
Prog. Mater. Sci.
,
117
, pp.
100723
.
You do not currently have access to this content.