Abstract

Conventional material extrusion additive manufacturing (AM) processes require the user to make a trade-off between surface quality and build time of the part. A large bead filament deposition can speed up the build process; however, it leads to surfaces with high roughness due to the stair-stepping effect. The surface quality can be improved by using a small bead filament deposition, which increases the build time of the part. We present a new approach incorporating hybrid multi-resolution layers in material extrusion additive manufacturing to provide excellent surface quality without increasing the build time. Our slicing algorithm generates planar layers with large filaments to fill the interior regions in less time. The generated exterior layers are conformal and use small filaments to reduce the stair-stepping effect and improve surface quality. We also present a path planning algorithm to build parts with a single manipulator using a multi-nozzle extrusion tool. The path planning algorithm generates a smooth material deposition path by avoiding collision between the tool and the already built layers. It reduces the collision checks and performs collision detection in a computationally efficient manner. We build five parts to validate our approach and illustrate the benefits of multi-resolution AM.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
.
2.
Shembekar
,
A. V.
,
Yoon
,
Y. J.
,
Kanyuck
,
A.
, and
Gupta
,
S. K.
,
2019
, “
Generating Robot Trajectories for Conformal Three-Dimensional Printing Using Nonplanar Layers
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p.
031011
.
3.
Jiang
,
J.
, and
Ma
,
Y.
,
2020
, “
Path Planning Strategies to Optimize Accuracy, Quality, Build Time and Material Use in Additive Manufacturing: a Review
,”
Micromachines
,
11
(
7
), p.
633
.
4.
Jiang
,
J.
,
Newman
,
S. T.
, and
Zhong
,
R. Y.
,
2021
, “
A Review of Multiple Degrees of Freedom for Additive Manufacturing Machines
,”
Int. J. Comput. Integr. Manuf.
,
34
(
2
), pp.
195
211
.
5.
Bhatt
,
P. M.
,
Kabir
,
A. M.
,
Malhan
,
R. K.
,
Shah
,
B.
,
Shembekar
,
A. V.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2019
, “
A Robotic Cell for Multi-Resolution Additive Manufacturing
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
, IEEE, pp.
2800
2807
.
6.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Shembekar
,
A. V.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2020
, “
Expanding Capabilities of Additive Manufacturing Through Use of Robotics Technologies: A Survey
,”
Addit. Manuf.
,
31
, p.
100933
.
7.
Habibi
,
M.
, and
Ziadia
,
M.
,
2021
, “
From Gantry-Based Machine to Robot-Based Fused Deposition Modelling: A State-of-the-Art
”.
8.
Chesser
,
P.
,
Post
,
B.
,
Roschli
,
A.
,
Carnal
,
C.
,
Lind
,
R.
,
Borish
,
M.
, and
Love
,
L.
,
2019
, “
Extrusion Control for High Quality Printing on Big Area Additive Manufacturing (BAAM) Systems
,”
Addit. Manuf.
,
28
, pp.
445
455
.
9.
Delrot
,
P.
,
Loterie
,
D.
,
Psaltis
,
D.
, and
Moser
,
C.
,
2017
, “
Integrated Platform for Multi-Resolution Additive Manufacturing
,”
International Conference on Additive Manufacturing in Products and Applications
,
Zurich, Switzerland
, Springer, pp.
145
151
.
10.
Bhatt
,
P. M.
,
Kabir
,
A. M.
,
Peralta
,
M.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2019
, “
A Robotic Cell for Performing Sheet Lamination-Based Additive Manufacturing
,”
Addit. Manuf.
,
27
, pp.
278
289
.
11.
Bhatt
,
P. M.
,
Peralta
,
M.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2018
, “
Robot Assisted Additive Manufacturing of Thin Multifunctional Structures
,”
ASME Manufacturing Science and Engineering Conference
,
College Station, TX
, p. V001T01A012.
12.
Mao
,
H.
,
Kwok
,
T.-H.
,
Chen
,
Y.
, and
Wang
,
C. C.
,
2019
, “
Adaptive Slicing Based on Efficient Profile Analysis
,”
Comput. Aided Des.
,
107
, pp.
89
101
.
13.
Gokulakrishnan
,
J.
, and
Kumar
,
G. S.
,
2018
, “
Optimum Adaptive Slicing Considering the Layer Strength of Fused Deposition Modelling Parts
,”
International Conference on Engineering Optimization
,
Lisbon, Portugal
, Springer, pp.
442
452
.
14.
Taufik
,
M.
, and
Jain
,
P. K.
,
2017
, “
Surface Roughness Improvement Using Volumetric Error Control Through Adaptive Slicing
,”
Int. J. Rapid Manuf.
,
6
(
4
), pp.
279
302
.
15.
Wasserfall
,
F.
,
Hendrich
,
N.
, and
Zhang
,
J.
,
2017
, “
Adaptive Slicing for the FDM Process Revisited
,”
2017 13th IEEE Conference on Automation Science and Engineering (CASE)
,
Xi'an, China
, IEEE, pp.
49
54
.
16.
Li
,
Q.
, and
Xu
,
X.
,
2015
, “
Self-adaptive Slicing Algorithm for 3D Printing of FGM Components
,”
Mater. Res. Innovations.
,
19
(
sup5
), pp.
S5
635
.
17.
Siraskar
,
N.
,
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Adaptive Slicing in Additive Manufacturing Process Using a Modified Boundary Octree Data Structure
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011007
.
18.
Huang
,
B.
, and
Singamneni
,
S. B.
,
2015
, “
Curved Layer Adaptive Slicing (clas) for Fused Deposition Modelling
,”
Rapid. Prototyp. J.
,
21
(
4
), pp.
354
367
.
19.
Sikder
,
S.
,
Barari
,
A.
, and
Kishawy
,
H.
,
2015
, “
Global Adaptive Slicing of Nurbs Based Sculptured Surface for Minimum Texture Error in Rapid Prototyping
,”
Rapid. Prototyp. J.
,
21
(
6
), pp.
649
661
.
20.
Wang
,
W.
,
Chao
,
H.
,
Tong
,
J.
,
Yang
,
Z.
,
Tong
,
X.
,
Li
,
H.
,
Liu
,
X.
, and
Liu
,
L.
,
2015
, “
Saliency-preserving Slicing Optimization for Effective 3D Printing
,”
Computer Graphics Forum
,
34
,
Wiley Online Library
, pp.
148
160
.
21.
Alkadi
,
F.
,
Lee
,
K.-C.
,
Bashiri
,
A. H.
, and
Choi
,
J.-W.
,
2020
, “
Conformal Additive Manufacturing Using a Direct-Print Process
,”
Addit. Manuf.
,
32
, p.
100975
.
22.
Zhao
,
D.
,
Guo
,
W.
, and
Gao
,
F.
,
2020
, “
Research on Curved Layer Fused Deposition Modeling With a Variable Extruded Filament
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041014
.
23.
Kraljić
,
D.
, and
Kamnik
,
R.
,
2018
, “
Trajectory Planning for Additive Manufacturing With a 6-dof Industrial Robot
,”
International Conference on Robotics in Alpe-Adria Danube Region
,
Patras, Greece
, Springer, pp.
456
465
.
24.
Zhao
,
G.
,
Ma
,
G.
,
Feng
,
J.
, and
Xiao
,
W.
,
2018
, “
Nonplanar Slicing and Path Generation Methods for Robotic Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3149
3159
.
25.
Jin
,
Y.
,
Du
,
J.
,
He
,
Y.
, and
Fu
,
G.
,
2017
, “
Modeling and Process Planning for Curved Layer Fused Deposition
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
273
285
.
26.
Alsharhan
,
A. T.
,
Centea
,
T.
, and
Gupta
,
S. K.
,
2017
, “
Enhancing Mechanical Properties of Thin-walled Structures Using Non-planar Extrusion Based Additive Manufacturing
,”
International Manufacturing Science and Engineering Conference
,
Los Angeles, CA
, ASME.
27.
Lim
,
S.
,
Buswell
,
R. A.
,
Valentine
,
P. J.
,
Piker
,
D.
,
Austin
,
S. A.
, and
De Kestelier
,
X.
,
2016
, “
Modelling Curved-Layered Printing Paths for Fabricating Large-Scale Construction Components
,”
Addit. Manuf.
,
12
, pp.
216
230
.
28.
Kim
,
C.
,
Espalin
,
D.
,
Cuaron
,
A.
,
Perez
,
M. A.
,
Lee
,
M.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2015
, “
Cooperative Tool Path Planning for Wire Embedding on Additively Manufactured Curved Surfaces Using Robot Kinematics
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021003
.
29.
Poudel
,
L.
,
Blair
,
C.
,
McPherson
,
J.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2020
, “
A Heuristic Scaling Strategy for Multi-Robot Cooperative Three-Dimensional Printing
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041002
.
30.
Poudel
,
L.
,
Zhou
,
W.
, and
Sha
,
Z.
,
2020
, “
A Generative Approach for Scheduling Multi-Robot Cooperative Three-Dimensional Printing
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061011
.
31.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
, and
Gupta
,
S. K.
,
2020
, “
Building Free-Form Thin Shell Parts Using Supportless Extrusion-Based Additive Manufacturing
,”
Addit. Manuf.
,
32
, p.
101003
.
32.
Zhang
,
X.
,
Wylie
,
B.
,
Oscar
,
C.
, and
Moore
,
C. A.
,
2020
, “
Time-Optimal and Collision-Free Path Planning for Dual-Manipulator 3D Printer
,”
2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
,
Toronto, Canada
, IEEE, pp.
2389
2396
.
33.
Cai
,
Y.
, and
Choi
,
S.
,
2019
, “
Deposition Group-Based Toolpath Planning for Additive Manufacturing With Multiple Robotic Actuators
,”
Proc. Manuf.
,
34
, pp.
584
593
.
34.
Jin
,
Y.
,
Pierson
,
H. A.
, and
Liao
,
H.
,
2019
, “
Toolpath Allocation and Scheduling for Concurrent Fused Filament Fabrication With Multiple Extruders
,”
IISE Trans.
,
51
(
2
), pp.
192
208
.
35.
Sossou
,
G.
,
Demoly
,
F.
,
Montavon
,
G.
, and
Gomes
,
S.
,
2018
, “
Design for 4d Printing: Rapidly Exploring the Design Space Around Smart Materials
,”
Procedia CIRP
,
70
, pp.
120
125
.
36.
Wu
,
C.
,
Dai
,
C.
,
Fang
,
G.
,
Liu
,
Y.-J.
, and
Wang
,
C. C.
,
2017
, “
Robofdm: A Robotic System for Support-Free Fabrication Using FDM
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
, IEEE, pp.
1175
1180
.
37.
Urbanic
,
R.
,
Hedrick
,
R.
, and
Burford
,
C.
,
2017
, “
A Process Planning Framework and Virtual Representation for Bead-based Additive Manufacturing Processes
,”
Int. J. Adv. Manuf. Technol.
,
90
(
1–4
), pp.
361
376
.
38.
Zhang
,
T.
,
Chen
,
X.
,
Fang
,
G.
,
Tian
,
Y.
, and
Wang
,
C. C.
,
2021
, “
Singularity-Aware Motion Planning for Multi-axis Additive Manufacturing
,”
IEEE Robot. Automat. Lett.
,
6
(
4
), pp.
6172
6179
.
39.
Roscoe
,
L.
,
1988
, “
Stereolithography Interface Specification
,”
America-3D Systems Inc
,
27
, p.
10
.
40.
ISO, I.
,
2002
, “
10303-21: Industrial Automation Systems and Integration-Product Data Representation and Exchange-Ppart 21: Implementation Methods: Clear Text Encoding of the Exchange Structure
,”
Int. Org. Stand
.
41.
Hodgson
,
G.
,
Ranellucci
,
A.
, and
Moe
,
J.
,
2015
, “
Slic3r Manual
,”
LulzBot.
,
24
, Accessed September 2016.
42.
Zhao
,
H.
,
Zhang
,
H.
,
Xin
,
S.
,
Deng
,
Y.
,
Tu
,
C.
,
Wang
,
W.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2018
, “
Dscarver: Decompose-and-Spiral-Carve for Subtractive Manufacturing
,”
ACM Trans. Graph. (TOG)
,
37
(
4
), pp.
1
14
.
43.
Etienne
,
J.
,
Ray
,
N.
,
Panozzo
,
D.
,
Hornus
,
S.
,
Wang
,
C. C.
,
Martínez
,
J.
,
McMains
,
S.
,
Alexa
,
M.
,
Wyvill
,
B.
, and
Lefebvre
,
S.
,
2019
, “
Curvislicer: Slightly Curved Slicing for 3-Axis Printers
,”
ACM Trans. Graph. (TOG)
,
38
(
4
), pp.
1
11
.
44.
Fang
,
G.
,
Zhang
,
T.
,
Zhong
,
S.
,
Chen
,
X.
,
Zhong
,
Z.
, and
Wang
,
C. C.
,
2020
, “
Reinforced Fdm: Multi-Axis Filament Alignment with Controlled Anisotropic Strength
,”
ACM Trans. Graph. (TOG)
,
39
(
6
), pp.
1
15
.
45.
Yoon
,
Y. J.
,
Yon
,
M.
,
Jung
,
S. E.
, and
Gupta
,
S. K.
,
2019
, “
Development of Three-Nozzle Extrusion System for Conformal Multi-resolution 3d Printing with a Robotic Manipulator
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
, ASME.
46.
Bhatt
,
P. M.
,
Gong
,
C.
,
Kabir
,
A. M.
,
Malhan
,
R. K.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2020
, “
Incorporating Tool Contact Considerations in Tool-path Planning for Robotic Operations
,”
International Manufacturing Science and Engineering Conference
,
Virtual, Online
, ASME.
47.
Bhatt
,
P. M.
,
Kabir
,
A. M.
,
Malhan
,
R. K.
,
Shembekar
,
A. V.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2019
, “
Concurrent Design of Tool-Paths and Impedance Controllers for Performing Area Coverage Operations in Manufacturing Applications Under Uncertainty
,”
IEEE International Conference on Automation Science and Engineering
,
Vancouver, Canada
.
48.
Floyd
,
R. W.
,
1962
, “
Algorithm 97: Shortest Path
,”
Commun. ACM
,
5
(
6
), p.
345
.
49.
Bellman
,
R.
,
1958
, “
On a Routing Problem
,”
Quart. Appl. Math.
,
16
(
1
), pp.
87
90
.
50.
Ford Jr
,
L. R.
,
1956
, “
Network Flow Theory
,” Technical Report, Rand Corp., Santa Monica, CA.
51.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
.
52.
Hauser
,
K.
,
2015
, “
Lazy Collision Checking in Asymptotically-Optimal Motion Planning
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
, IEEE, pp.
2951
2957
.
53.
Kabir
,
A. M.
,
Bhatt
,
P. M.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2021
, “
Robotic Finishing of Geometrically Complex Parts
,”
Recent Advances in Industrial Robotics
, pp.
315
336
.
54.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
, Vol.
3
,
Pearson/Prentice Hall
,
Upper Saddle River, NJ
.
55.
Sandberg
,
D. W.
, and
Wodtli
,
R. B.
,
1988
, “
Collision Detection Using Sphere Approximations
,”
Robotics and Factories of the Future
,
Springer
, pp.
456
460
.
56.
Yoshikawa
,
T.
,
1990
,
Foundations of Robotics: Analysis and Control
,
MIT Press
,
Cambridge, MA
.
57.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
,
4
(
2
), pp.
3
9
.
58.
Yoshikawa
,
T.
,
1984
, “
Analysis and Control of Robot Manipulators with Redundancy
,”
Robotics Research: The First International Symposium
,
MIT Press
,
Cambridge, MA
, pp.
735
747
.
59.
Chen
,
P. Y.
, and
Popovich
,
P. M.
,
2002
,
Correlation: Parametric and Nonparametric Measures
, No. 137–139,
Sage
.
60.
Bhatt
,
P. M.
,
Kulkarni
,
A.
,
Malhan
,
R. K.
, and
Gupta
,
S. K.
,
2021
, “
Optimizing Part Placement for Improving Accuracy of Robot-based Additive Manufacturing
,”
IEEE International Conference on Robotics and Automation
,
Xi'an, China
.
61.
Bhatt
,
P. M.
,
Malhan
,
R. K.
, and
Gupta
,
S. K.
,
2019
, “
Computational Foundations for Using Three Degrees of Freedom Build Platforms to Enable Supportless Extrusion-Based Additive Manufacturing
,”
International Manufacturing Science and Engineering Conference
,
Erie, PA
, ASME.
62.
Paviot
,
T.
, and
Feringa
,
J.
,
2018
, “
Pythonocc
,” Technical Report, 3D CAD/CAE/PLM Development Framework for the Python Programming Language.
63.
Bhatt
,
P. M.
,
Rajendran
,
P.
,
McKay
,
K.
, and
Gupta
,
S. K.
,
2019
, “
Context-Dependent Compensation Scheme to Reduce Trajectory Execution Errors for Industrial Manipulators
,”
IEEE International Conference on Robotics and Automation
,
Montreal, Canada
, pp.
5578
5584
.
64.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
,
Shembekar
,
A. V.
, and
Gupta
,
S. K.
,
2021
, “
Trajectory-dependent Compensation Scheme to Reduce Manipulator Execution Errors for Manufacturing Applications
,”
ASME Manufacturing Science and Engineering Conference
,
Virtual, Online
.
65.
Hexagon ROMER Absolute Arm with Integrated Scanner, https://www.hexagonmi.com/products/portable-measuring-arms/romer-absolute-arm-with-integrated-scanner, Accessed January 2021.
66.
Ultimaker Cura Software
, https://ultimaker.com/software/ultimaker-cura, Accessed January 2021.
You do not currently have access to this content.