Abstract

The modeling of a spiral bevel gear (SBG) is a fundamental work to its design, analysis, and manufacturing. The essential work of modeling SBGs is the generation of tooth surface points that meet the strict accuracy requirement of the SBG industry. Specially, if those points are evenly distributed, the 3D models can be efficiently generated by developing automatic programs, or else the tedious manual modeling process is usually applied with 3D commercial software. Hence, it is very beneficial to accurately generating those evenly distributed points with an approach that can stably and efficiently solve the highly nonlinear equations related to the complicated tooth surface geometry. This work proposed such an approach to the SBG produced by face-milled generated (FMG) method. First, two representations of the geometric meshing theory (GMT) are introduced to calculate tooth surfaces of different cases as closed-form (explicit) results rather than implicit results. Subsequently, a new strategy is employed to accurately and efficiently obtain the tooth surface points that are approximately even-distributed. Furthermore, an advanced geometric iterative optimization algorithm (GIOA) is developed to solve the nonlinear equations in a stable way. With the calculated tooth surface points, a special automatic program is developed to accomplish the 3D modeling of SBGs. Examples are discussed to show the validity of this work.

References

1.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Wang
,
J. C.
,
Bossler
,
R. B.
, and
Chen
,
Y. J. D.
,
1992
, “
Design and Geometry of Face-Gear Drives
,”
ASME J. Mech. Des.
,
114
(
4
), pp.
642
647
. 10.1115/1.2917055
2.
Fong
,
Z. H.
, and
Tsay
,
C.-B.
,
1991
, “
A Mathematical Model for the Tooth Geometry of Circular-Cut Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
113
(
2
), pp.
174
181
. 10.1115/1.2912766
3.
Tsay
,
C. B.
, and
Lin
,
J. Y.
,
1993
, “
A Mathematical Model for the Tooth Geometry of Hypoid Gears
,”
Math. Comput. Modelling
,
18
(
2
), pp.
23
34
. 10.1016/0895-7177(93)90004-I
4.
Shih
,
Y.-P.
,
Fong
,
Z.-H.
, and
Lin
,
G. C.
,
2006
, “
Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
38
47
. 10.1115/1.2359471
5.
Yang
,
X.
,
Song
,
C.
,
Zhu
,
C.
,
Liang
,
C.
, and
Sun
,
R.
,
2019
, “
Impacts of Misalignments on Mesh Behaviors of Face-Hobbed Hypoid Gear Considering System Deformation
,”
IEEE Access
,
7
(
1
), p.
1
. 10.1109/ACCESS.2018.2876146
6.
Lelkes
,
M.
,
Marialigeti
,
J.
, and
Play
,
D.
,
2002
, “
Numerical Determination of Cutting Parameters for the Control of Klingelnberg Spiral Bevel Gear Geometry
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
761
771
. 10.1115/1.1518502
7.
Vimercati
,
M.
,
2007
, “
Mathematical Model for Tooth Surfaces Representation of Face-Hobbed Hypoid Gears and Its Application to Contact Analysis and Stress Calculation
,”
Mech. Mac. Theory
,
42
(
6
), pp.
668
690
. 10.1016/j.mechmachtheory.2006.06.007
8.
Liu
,
S.
,
Song
,
C.
,
Zhu
,
C.
,
Liang
,
C.
, and
Yang
,
X.
,
2019
, “
Investigation on the Influence of Work Holding Equipment Errors on Contact Characteristics of Face-Hobbed Hypoid Gear
,”
Mech. Mach. Theory
,
138
, pp.
95
111
. 10.1016/j.mechmachtheory.2019.03.042
9.
Liang
,
C.
,
Song
,
C.
,
Zhu
,
C.
,
Wang
,
Y.
,
Liu
,
S.
, and
Sun
,
R.
,
2020
, “
Investigation of Tool Errors and Their Influences on Tooth Surface Topography for Face-Hobbed Hypoid Gears
,”
ASME J. Mech. Des.
,
142
(
4
), p.
044501
. 10.1115/1.4044745
10.
Dr Simon
,
V.
,
2015
, “
Design and Manufacture of Spiral Bevel Gears With Reduced Transmission Errors
,”
ASME J. Mech. Des.
,
131
(
4
), p.
041007
. 10.1115/1.3087540
11.
Simon
,
V.
,
2014
, “
Optimal Tooth Modifications in Face-Hobbed Spiral Bevel Gears to Reduce the Influence of Misalignments on Elastohydrodynamic Lubrication
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071007
. 10.1115/1.4026264
12.
Zheng
,
F.
,
Hua
,
L.
,
Chen
,
D.-f.
, and
Han
,
X.
,
2016
, “
Generation of Non-circular Spiral Bevel Gears by Face-Milling Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
064501
. 10.1115/1.4033045
13.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
, and
Chen
,
D.-f.
,
2016
, “
Generation of Non-Circular Bevel Gears With Free-Form Tooth Profile and Tooth Lengthwise Based on Screw Theory
,”
ASME J. Mech. Des.
,
138
(
6
), p.
064501
. 10.1115/1.4033396
14.
Fan
,
Q.
,
2006
, “
Enhanced Algorithms of Contact Simulation for Hypoid Gear Drives Produced by Face-Milling and Face-Hobbing Processes
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
31
37
. 10.1115/1.2359475
15.
Fan
,
Q.
,
DaFoe
,
R.
, and
Swanger
,
J.
,
2008
, “
Higher-Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
7
), pp.
1029
1033
. 10.1115/1.2898878
16.
Álvarez
,
Á
,
Calleja
,
A.
,
Ortega
,
N.
, and
De Lacalle
,
L. N. L.
,
2018
, “
Five-Axis Milling of Large Spiral Bevel Gears: Toolpath Definition, Finishing, and Shape Errors
,”
Metals
,
8
(
5
), p.
353
. 10.3390/met8050353
17.
Wu
,
D.
, and
Luo
,
J-.S.
,
1992
,
A Geometric Theory of Conjugate Tooth Surfaces
,
Word Scientific
,
Singapore
.
18.
Dooner
,
D. B.
,
2002
, “
On the Three Laws of Gearing
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
733
744
. 10.1115/1.1518501
19.
Di
,
P. F.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
,
2005
, “
Alternative Formulation of the Theory of Gearing
,”
Mech. Mach. Theory
,
40
(
5
), pp.
613
637
. 10.1016/j.mechmachtheory.2004.10.003
20.
Puccio
,
D. I.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
,
2007
, “
An Invariant Approach for Gear Generation With Supplemental Motions
,”
Mech. Mach. Theory
,
42
(
3
), pp.
275
295
. 10.1016/j.mechmachtheory.2006.03.017
21.
Peng
,
W.
, and
Zhang
,
Y.
,
2013
, “
An Invariant Approach for Curvature Analysis of Conjugate Surfaces
,”
Mech. Mach. Theory
,
64
(
6
), pp.
175
199
.
22.
Zhou
,
Y.
, and
Chen
,
Z. C.
,
2015
, “
A New Geometric Meshing Theory for a Closed-Form Vector Representation of the Face-Milled Generated Gear Tooth Surface and Its Curvature Analysis
,”
Mech. Mach. Theory
,
83
, pp.
91
108
. 10.1016/j.mechmachtheory.2014.09.002
23.
Zhou
,
Y.
,
Chen
,
Z. C.
, and
Tang
,
J.
,
2017
, “
A New Method of Designing the Tooth Surfaces of Spiral Bevel Gears With Ruled Surface for Their Accurate Five-Axis Flank Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061004
. 10.1115/1.4035079
24.
Zhou
,
Y.
,
Chen
,
Z. C.
,
Tang
,
J.
, and
Liu
,
S.
,
2016
, “
An Innovative Approach to NC Programming for Accurate Five-Axis Flank Milling of Spiral Bevel or Hypoid Gears
,”
Comput.-Aided Des.
,
84
, pp.
15
24
. 10.1016/j.cad.2016.11.003
25.
Han
,
D.
,
Jin-yuan
,
T.
,
Zhen-yu
,
Z.
, and
Wei
,
C.
,
2016
, “
Tooth Flank Reconstruction and Optimizations After Simulation Process Modeling for the Spiral Bevel Gear
,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
,
230
(
13
), pp.
2260
2272
.
26.
Habibi
,
M.
, and
Chen
,
Z.
,
2015
, “
A New Approach to Blade Design With Constant Rake and Relief Angles for Face-Hobbing of Bevel Gears
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031005
. 10.1115/1.4030936
27.
Habibi
,
M.
,
Chen
,
Z.
, and
Fang
,
Z.
,
2015
, “
Tool Wear Improvement in Face-Hobbing of Bevel Gears by Re-designing the Cutting Blades
,”
IFAC-PapersOnLine
,
48
(
3
), pp.
1888
1893
. 10.1016/j.ifacol.2015.06.362
28.
Ding
,
H.
,
Tang
,
J.
,
Zhong
,
J.
,
Wan
,
G.
, and
Zhou
,
Z.
,
2016
, “
Simulation and Optimization of Computer Numerical Control-Milling Model for Machining a Spiral Bevel Gear With New Tooth Flank
,”
Proc. Inst. Mech. Eng. B
,
230
(
10
), pp.
1897
1909
. 10.1177/0954405416640171
29.
Zhou
,
Y.
,
Peng
,
S.
,
Liu
,
X.
,
Liu
,
S.
, and
Tang
,
J.
,
2019
, “
A Novel Method to Generate the Tooth Surface Model of Face-Milled Generated Spiral Bevel Gears
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5
), pp.
1205
1214
. 10.1007/s00170-018-2951-4
30.
Wu
,
Y.
,
Zhou
,
Y.
,
Zhou
,
Z.
,
Tang
,
J.
, and
Ouyang
,
H.
,
2018
, “
An Advanced CAD/CAE Integration Method for the Generative Design of Face Gears
,”
Adv. Eng. Software
,
126
, pp.
90
99
. 10.1016/j.advengsoft.2018.09.009
31.
Zhou
,
Y.
,
Wu
,
Y.
,
Wang
,
L.
,
Tang
,
J.
, and
Ouyang
,
H.
,
2019
, “
A New Closed-Form Calculation of Envelope Surface for Modeling Face Gears
,”
Mech. Mach. Theory
,
137
, pp.
211
226
. 10.1016/j.mechmachtheory.2019.03.024
32.
Fan
,
Q.
,
2016
, “
Ease-Off and Application in Tooth Contact Analysis for Face-Milled and Face-Hobbed Spiral Bevel and Hypoid Gears
,”
Theory and Practice of Gearing and Transmissions. Springer International Publishing
,
34
, pp.
321
339
.
33.
Hamri
,
O.
,
Léon
,
J.-C.
,
Giannini
,
F.
, and
Falcidieno
,
B.
, “
Software Environment for CAD/CAE Integration
,”
Adv. Eng. Software
,
41
(
10-11
), pp.
1211
1222
. 10.1016/j.advengsoft.2010.07.003
34.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Software
,
100
, pp.
161
175
. 10.1016/j.advengsoft.2016.07.017
35.
Liu
,
J.
,
Ma
,
Y.
,
Fu
,
J.
, and
Duke
,
K.
,
2015
, “
A Novel CACD/CAD/CAE Integrated Design Framework for Fiber-Reinforced Plastic Parts
,”
Adv. Eng. Software
,
87
, pp.
13
29
. 10.1016/j.advengsoft.2015.04.013
36.
Litvin
,
F. L.
,
1982
,
Mathematical Models for the Synthesis and Optimization of Spiral Bevel Gear Tooth Surfaces
, NASA-CR-3553,
NASA Contractor Reports
,
Washington, DC
.
37.
Litvin
,
F. L.
,
Tsung
,
W.-J.
,
Coy
,
J. J.
, and
Heine
,
C.
,
1987
, “
Method for Generation of Spiral Bevel Gears With Conjugate Gear Tooth Surfaces
,”
J. Mech., Transmissions, Automation Des.
,
109
(
2
), pp.
163
170
. 10.1115/1.3267431
38.
Fan
,
Q.
,
2006
, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1315
1327
. 10.1115/1.2337316
39.
Fan
,
Q.
,
2011
, “
Advanced Developments in Computerized Design and Manufacturing of Spiral Bevel and Hypoid Gear Drives
,”
Appl. Mech. Mater.
,
86
, pp.
439
442
. 10.4028/www.scientific.net/AMM.86.439
40.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge
.
41.
Wang
,
S.
,
Zhou
,
Y.
,
Tang
,
J.
, and
Xiao
,
Z.
,
2019
, “
An Adaptive Geometric Meshing Theory for the Face-Milled Generated Spiral Bevel Gears
,”
Forschung im Ingenieurwesen
,
83
(
3
), pp.
775
780
. 10.1007/s10010-019-00323-y
You do not currently have access to this content.