Abstract

Traditional design optimization is an iterative process of design, simulation, and redesign, which requires extensive calculations and analysis. The designer needs to adjust and evaluate the design parameters manually and continually based on the simulation results until a satisfactory design is obtained. However, the expensive computational costs and large resource consumption of complex products hinder the wide application of simulation in industry. It is not an easy task to search the optimal design solution intelligently and efficiently. Therefore, a simulation data-driven design approach which combines dynamic simulation data mining and design optimization is proposed to achieve this purpose in this study. The dynamic simulation data mining algorithm—on-line sequential extreme learning machine with adaptive weights (WadaptiveOS-ELM)—is adopted to train the dynamic prediction model to effectively evaluate the merits of new design solutions in the optimization process. Meanwhile, the prediction model is updated incrementally by combining new “good” data set to reduce the modeling cost and improve the prediction accuracy. Furthermore, the improved heuristic optimization algorithm—adaptive and weighted center particle swarm optimization (AWCPSO)—is introduced to guide the design change direction intelligently to improve the search efficiency. In this way, the optimal design solution can be searched automatically with less actual simulation iterations and higher optimization efficiency, and thus supporting the rapid product optimization effectively. The experimental results demonstrate the feasibility and effectiveness of the proposed approach.

References

1.
Roy
,
R.
,
Hinduja
,
S.
, and
Teti
,
R.
,
2008
, “
Recent Advances in Engineering Design Optimisation: Challenges and Future Trends
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
697
715
. 10.1016/j.cirp.2008.09.007
2.
Park
,
H. S.
, and
Dang
,
X. P.
,
2010
, “
Structural Optimization Based on CAD-CAE Integration and Metamodeling Techniques
,”
Comput. Aided Des.
,
42
(
10
), pp.
889
902
. 10.1016/j.cad.2010.06.003
3.
Wang
,
D.
,
Hu
,
F.
,
Ma
,
Z.
,
Wu
,
Z.
, and
Zhang
,
W.
,
2014
, “
A CAD/CAE Integrated Framework for Structural Design Optimization Using Sequential Approximation Optimization
,”
Adv. Eng. Softw.
,
76
, pp.
56
68
. 10.1016/j.advengsoft.2014.05.007
4.
Cho
,
C. S.
,
Choi
,
E. H.
,
Cho
,
J. R.
, and
Lim
,
O. K.
,
2011
, “
Topology and Parameter Optimization of a Foaming Jig Reinforcement Structure by the Response Surface Method
,”
Comput. Aided Des.
,
43
(
12
), pp.
1707
1716
. 10.1016/j.cad.2011.08.008
5.
Islam
,
M.
,
Buijk
,
A.
,
Rais-Rohani
,
M.
, and
Motoyama
,
K.
,
2015
, “
Process Parameter Optimization of Lap Joint Fillet Weld Based on FEM–RSM–GA Integration Technique
,”
Adv. Eng. Softw.
,
79
(
C
), pp.
127
136
. 10.1016/j.advengsoft.2014.09.007
6.
Kang
,
G. J.
,
Park
,
C. H.
, and
Choi
,
D. H.
,
2016
, “
Metamodel-Based Design Optimization of Injection Molding Process Variables and Gates of an Automotive Glove Box for Enhancing Its Quality
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1723
1732
. 10.1007/s12206-016-0328-x
7.
Lechevalier
,
D.
,
Hudak
,
S.
,
Ak
,
R.
,
Tina Lee
,
Y.
, and
Foufou
,
S.
,
2015
, “
A Neural Network Meta-Model and Its Application for Manufacturing
,”
IEEE Big Data Conference
,
Santa Clara, CA
,
IEEE
, pp.
1428
1435
.
8.
Nguyen
,
A. T.
,
Reiter
,
S.
, and
Rigo
,
P.
,
2014
, “
A Review on Simulation-Based Optimization Methods Applied to Building Performance Analysis
,”
Appl. Energy
,
113
(
6
), pp.
1043
1058
. 10.1016/j.apenergy.2013.08.061
9.
Dai
,
L.
,
Guan
,
Z. Q.
,
Chen
,
B. S.
, and
Zhang
,
H. W.
,
2008
, “
An Open Platform of Shape Design Optimization for Shell Structure
,”
Struct. Multidiscipl. Optim.
,
35
(
6
), pp.
609
622
. 10.1007/s00158-007-0194-3
10.
Hare
,
W.
,
Nutini
,
J.
, and
Tesfamariam
,
S.
,
2013
, “
A Survey of Non-Gradient Optimization Methods in Structural Engineering
,”
Adv. Eng. Softw.
,
59
(
5
), pp.
19
28
. 10.1016/j.advengsoft.2013.03.001
11.
Corriveau
,
G.
,
Guilbault
,
R.
, and
Tahan
,
A.
,
2010
, “
Genetic Algorithms and Finite Element Coupling for Mechanical Optimization.
,”
Adv. Eng. Softw.
,
41
(
3
), pp.
422
426
. 10.1016/j.advengsoft.2009.03.008
12.
Li
,
W.
, and
Mcadams
,
D. A.
,
2014
, “
Designing Optimal Origami Structures by Computational Evolutionary Embryogeny
,”
ASME J. Comput. Inf. Sci. Eng
,
15
(
1
), p.
V05BT08A035
. 10.1115/detc2014-34377
13.
Kou
,
X. Y.
,
Parks
,
G. T.
, and
Tan
,
S. T.
,
2012
, “
Optimal Design of Functionally Graded Materials Using a Procedural Model and Particle Swarm Optimization
,”
Comput. Aided Des.
,
44
(
4
), pp.
300
310
. 10.1016/j.cad.2011.10.007
14.
Flocker
,
F. W.
, and
Bravo
,
R. H.
,
2016
, “
Ensuring Global Convergence in Design Optimization Using the Particle Swarm Optimization Technique
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081402
. 10.1115/1.4033727
15.
Hu
,
M.
,
Wu
,
T.
, and
Weir
,
J. D.
,
2013
, “
An Adaptive Particle Swarm Optimization With Multiple Adaptive Methods
,”
IEEE Trans. Evol. Comput.
,
17
(
5
), pp.
705
720
. 10.1109/TEVC.2012.2232931
16.
Yıldız
,
A. R.
,
2009
, “
An Effective Hybrid Immune-Hill Climbing Optimization Approach for Solving Design and Manufacturing Optimization Problems in Industry
,”
J. Mater. Process. Technol.
,
209
(
6
), pp.
2773
2780
. 10.1016/j.jmatprotec.2008.06.028
17.
Karaboga
,
D.
, and
Basturk
,
B.
,
2007
, “
A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm
,”
J. Global Optim.
,
39
(
3
), pp.
459
471
. 10.1007/s10898-007-9149-x
18.
Wang
,
D.
,
Wu
,
Z.
,
Fei
,
Y.
, and
Zhang
,
W.
,
2014
, “
Review: Structural Design Employing a Sequential Approximation Optimization Approach
,”
Comput. Struct.
,
134
(
4
), pp.
75
87
. 10.1016/j.compstruc.2013.12.004
19.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
20.
Chen
,
T. Y.
, and
Huang
,
J. H.
,
2013
, “
Application of Data Mining in a Global Optimization Algorithm
,”
Adv. Eng. Softw.
,
66
(
12
), pp.
24
33
. 10.1016/j.advengsoft.2012.11.019
21.
Better
,
M.
,
Glover
,
F.
, and
Laguna
,
M.
,
2007
, “
Advances in Analytics: Integrating Dynamic Data Mining With Simulation Optimization
,”
IBM J. Res. Dev.
,
51
(
3.4
), pp.
477
487
. 10.1147/rd.513.0477
22.
Li
,
Y.
, and
Roy
,
U.
,
2015
, “
Challenges in Developing a Computational Platform to Integrate Data Analytics With Simulation-Based Optimization
,”
ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Boston, MA
.
23.
Li
,
X.
,
Shao
,
Y.
, and
Liu
,
Y.
,
2015
, “
Takagi-Sugeno Model Based Simulation Data Mining for Efficient Product Design
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
, p.
V01BT02A032
.
24.
Zhang
,
H. R.
,
2006
, “
Incremental and Online Learning Algorithm for Regression Least Squares Support Vector Machine
,”
Chin. J. Comput.
,
29
(
3
), pp.
400
406
.
25.
Gu
,
B.
,
Sheng Victor
,
S.
,
Wang
,
Z.
,
Ho
,
D.
,
Osman
,
S.
, and
Li
,
S.
,
2015
, “
Incremental Learning for ν-Support Vector Regression
,”
Neural Netw.
,
67
, pp.
140
150
. 10.1016/j.neunet.2015.03.013
26.
Gjerkes
,
H.
,
Malensek
,
J.
,
Sitar
,
A.
, and
Golobic
,
I.
,
2011
, “
Product Identification in Industrial Batch Fermentation Using a Variable Forgetting Factor
,”
Control Eng. Pract.
,
19
(
10
), pp.
1208
1215
. 10.1016/j.conengprac.2011.06.011
27.
Liang
,
N. Y.
,
Huang
,
G. B.
,
Saratchandran
,
P.
, and
Sundararajan
,
N.
,
2006
, “
A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks
,”
IEEE Trans. Neural Netw.
,
17
(
6
), pp.
1411
1423
. 10.1109/TNN.2006.880583
28.
Soares
,
S. G.
, and
Rui
,
A.
,
2015
, “
An On-Line Weighted Ensemble of Regressor Models to Handle Concept Drifts
,”
Eng. Appl. Artif. Intell.
,
37
, pp.
392
406
. 10.1016/j.engappai.2014.10.003
29.
Soares
,
S. G.
, and
Araújo
,
R.
,
2015
, “
A Dynamic and On-Line Ensemble Regression for Changing Environments
,”
Expert Syst. Appl.
,
42
(
6
), pp.
2935
2948
. 10.1016/j.eswa.2014.11.053
30.
Brzezinski
,
D.
, and
Stefanowski
,
J.
,
2014
, “
Combining Block-Based and Online Methods in Learning Ensembles From Concept Drifting Data Streams
,”
Inform. Sci. Int. J.
,
265
(
5
), pp.
50
67
. 10.1016/j.ins.2013.12.011
31.
Huang
,
G.-B.
,
Chen
,
L.
, and
Siew
,
C.-K.
,
2006
, “
Universal Approximation Using Incremental Constructive Feedforward Networks With Random Hidden Nodes
,”
IEEE Trans. Neural Netw.
,
17
(
4
), pp.
879
892
. 10.1109/TNN.2006.875977
32.
Rong
,
H. J.
,
Huang
,
G. B.
,
Sundararajan
,
N.
, and
Saratchandran
,
P.
,
2009
, “
Online Sequential Fuzzy Extreme Learning Machine for Function Approximation and Classification Problems
,”
IEEE Trans. Syst. Man Cybern. B Cybern.
,
39
(
4
), pp.
1067
1072
. 10.1109/TSMCB.2008.2010506
33.
Huynh
,
H. T.
, and
Won
,
Y.
,
2011
, “
Regularized Online Sequential Learning Algorithm for Single-Hidden Layer Feedforward Neural Networks
,”
Pattern Recognit. Lett.
,
32
(
14
), pp.
1930
1935
. 10.1016/j.patrec.2011.07.016
34.
Scardapane
,
S.
,
Comminiello
,
D.
,
Scarpiniti
,
M.
, and
Uncini
,
A.
,
2015
, “
Online Sequential Extreme Learning Machine With Kernels
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
26
(
9
), pp.
2214
2220
. 10.1109/TNNLS.2014.2382094
35.
Lan
,
Y.
,
Soh
,
Y. C.
, and
Huang
,
G. B.
,
2009
, “
Letters: Ensemble of Online Sequential Extreme Learning Machine
,”
Neurocomputing
,
72
(
13–15
), pp.
3391
3395
. 10.1016/j.neucom.2009.02.013
36.
Banerjee
,
K. S.
,
1973
,
Generalized Inverse of Matrices and Its Applications
,
Wiley
,
New York
.
37.
He
,
X. A.
, and
Liu
,
W
,
2006
, “
Preliminary Discussion on Weighted Least Square Method and Its Residual Plot: Also Answering Associate Professor Sun Xiaosu
,”
Stat. Res.
,
4
, pp.
53
57
.
38.
Higham
,
B. N. J.
,
2002
,
Accuracy and Stability of Numerical Algorithms
, 2nd ed.,
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
.
39.
Liu
,
Y.
,
Qin
,
Z.
,
Shi
,
Z.
, and
Lu
,
J.
,
2007
, “
Center Particle Swarm Optimization
,”
Neurocomputing
,
70
(
4–6
), pp.
672
679
. 10.1016/j.neucom.2006.10.002
40.
Han
,
J. H.
,
Zheng-Rong
,
L. I.
, and
Wei
,
Z. C.
,
2006
, “
Adaptive Particle Swarm Optimization Algorithm and Simulation
,”
J. Syst. Simul.
,
18
(
10
), pp.
2969
2971
.
You do not currently have access to this content.