To obtain real-time interactions in the virtual cockpit system (VCS), a real-time trajectory generation method based on dynamical nonlinear optimization and regression prediction for the haptic feedback manipulator (HFM) is presented in this paper. First, a haptic feedback system based on servoserial manipulator is constructed. Then, the trajectory planning problem for the HFM is formulated as a nonlinear optimization problem to balance the motion time and power consumption and ensure the safety of physical human–robot interactions (pHRI). Multiple optimization problems are solved to generate the optimal database off-line. Finally, the classified multivariate (CM) regression method is presented to learn the database and generate optimal trajectories with arbitrary initial and objective positions on-line. Results show that trajectories with rapidity, safety, and lower power consumption can be generated in real-time by this method, which lay a basis of haptic interactions in the VCS.

References

1.
Dai
,
S.
,
Lei
,
X.
, and
Mei
,
J.
,
2002
, “
Virtual Cockpit System
,”
J. Syst. Simul.
,
14
(
4
), pp.
488
492
.
2.
Wang
,
D.
,
Jiao
,
J.
,
Zhang
,
Y.
, and
Zhao
,
X.
,
2016
, “
Computer Haptics: Haptic Modeling and Rendering in Virtual Reality Environments
,”
J. Comput.-Aided Des. Comput. Graphics
,
28
(
6
), pp.
881
895
.
3.
Tang
,
Y.
,
Gu
,
H.
, and
Li
,
P.
,
2012
, “
Augmented Semi-Virtual Reality Cockpit Technology
,”
J. Traffic Transp. Eng.
,
12
(
2
), pp.
62
69
.http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201202009
4.
CGSD
,
1998
, “
Force/Tactile Feedback System for Virtual Reality Environments
,” Mountain View, CA, Report No.
ADA342328
.http://www.dtic.mil/docs/citations/ADA342328
5.
Stonum
,
R.
,
1998
, “
A Survey of Immersive Technology for Maintenance Evaluations
,” Battelle Memorial Institute, Dayton, OH, Report No. AFRL-HE-WP-TR-1998-0038.
6.
Kim
,
K. W.
,
Kim
,
H. S.
,
Choi
,
Y. K.
, and
Park
,
J. H.
,
1997
, “
Optimization of Cubic Polynomial Joint Trajectories and Sliding Mode Controllers for Robots Using Evolution Strategy
,”
23rd International Conference on Industrial Electronics, Control, and Instrumentation
(
IECON
), New Orleans, LA, Nov. 14, pp.
1444
1447
.
7.
Bazaz
,
S. A.
, and
Tondu
,
B.
,
1997
, “
Online Computing of a Robotic Manipulator Joint Trajectory With Velocity and Acceleration Constraints
,”
IEEE International Symposium on Assembly and Task Planning
(
ISATP'97
), Marina del Rey, CA, Aug. 7–9, pp.
1
6
.
8.
Lampariello
,
R.
, and
Hirzinger
,
G.
,
2013
, “
Generating Feasible Trajectories for Autonomous On-Orbit Grasping of Spinning Debris in a Useful Time
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Tokyo, Japan, Nov. 3–7, pp.
5652
5659
.
9.
Liu
,
X.
,
Meng
,
Z.
,
Ni
,
J.
, and
Zhu
,
Z.
,
2015
, “
Trajectory Planning Algorithm for Hydraulic Servo Manipulator of Three Freedom
,”
J. Zhejiang Univ.
,
49
(
9
), pp.
1776
1782
.
10.
Miossec
,
S.
,
Yokoi
,
K.
, and
Kheddar
,
A.
,
2006
, “
Development of a Software for Motion Optimization of Robots-Application to the Kick Motion of the Hrp-2 Robot
,” IEEE International Conference on Robotics and Biomimetics (
ROBIO
), Kunming, China, Dec. 17–20, pp.
299
304
.
11.
Bäuml
,
B.
,
Wimböck
,
T.
, and
Hirzinger
,
G.
,
2010
, “
Kinematically Optimal Catching a Flying Ball With a Hand-Arm-System
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
2592
2599
.
12.
Schulman
,
J.
,
Duan
,
Y.
,
Ho
,
J.
,
Lee
,
A.
,
Awwal
,
I.
,
Bradlow
,
H.
,
Pan
,
J.
,
Patil
,
S.
,
Goldberg
,
K.
, and
Abbeel
,
P.
, 2014, “
Motion Planning With Sequential Convex Optimization and Convex Collision Checking
,”
Int. J. Rob. Res.
,
33
(9), pp. 1251–1270.
13.
von Stryk
,
O.
, and
Schlemmer
,
M.
,
1994
, “
Optimal Control of the Industrial Robot Manutec r3
,”
Computational Optimal Control. ISNM International Series of Numerical Mathematics
, Vol. 115, R. Bulirsch and D. Kraft D, eds., Birkhäuser Basel, Switzerland.
14.
Chettibi
,
T.
,
Lehtihet
,
H.
,
Haddad
,
M.
, and
Hanchi
,
S.
,
2004
, “
Minimum Cost Trajectory Planning for Industrial Robots
,”
Eur. J. Mech.-A
,
23
(
4
), pp.
703
715
.
15.
Pan
,
J.
,
Chen
,
Z.
, and
Abbeel
,
P.
,
2014
, “
Predicting Initialization Effectiveness for Trajectory Optimization
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May. 31–June 7, pp.
5183
5190
.
16.
Jetchev
,
N.
, and
Toussaint
,
M.
,
2013
, “
Fast Motion Planning From Experience: Trajectory Prediction for Speeding Up Movement Generation
,”
Auton. Robots
,
34
(
1–2
), pp.
111
127
.
17.
Hauser
,
K.
,
2017
, “
Learning the Problem-Optimum Map: Analysis and Application to Global Optimization in Robotics
,”
IEEE Trans. Rob.
,
33
(
1
), pp.
141
152
.
18.
Lampariello
,
R.
,
Nguyen-Tuong
,
D.
,
Castellini
,
C.
,
Hirzinger
,
G.
, and
Peters
,
J.
,
2011
, “
Trajectory Planning for Optimal Robot Catching in Real-Time
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
3719
3726
.
19.
Werner
,
A.
,
Trautmann
,
D.
,
Lee
,
D.
, and
Lampariello
,
R.
,
2015
, “
Generalization of Optimal Motion Trajectories for Bipedal Walking
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
1571
1577
.
20.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
21.
De Santis
,
A.
,
Siciliano
,
B.
,
De Luca
,
A.
, and
Bicchi
,
A.
,
2008
, “
An Atlas of Physical Human–Robot Interaction
,”
Mechanism Mach. Theory
,
43
(
3
), pp.
253
270
.
22.
Corrales
,
J.
,
Candelas
,
F.
, and
Torres
,
F.
,
2011
, “
Safe Human–Robot Interaction Based on Dynamic Sphere-Swept Line Bounding Volumes
,”
Rob. Comput.-Integr. Manuf.
,
27
(
1
), pp.
177
185
.
23.
Pereira
,
A.
, and
Althoff
,
M.
,
2015
, “
Safety Control of Robots Under Computed Torque Control Using Reachable Sets
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
331
338
.
24.
Rastegar
,
J.
, and
Perel
,
D.
,
1990
, “
Generation of Manipulator Workspace Boundary Geometry Using the Monte Carlo Method and Interactive Computer Graphics
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
452
454
.
25.
ISO
,
2016
, “
Robots and Robotic Devices-Collaborative Robots
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO/TS 15066
.https://www.iso.org/standard/62996.html
26.
Hargraves
,
C. R.
, and
Paris
,
S. W.
,
1987
, “
Direct Trajectory Optimization Using Nonlinear Programming and Collocation
,”
J. Guid., Control, Dyn.
,
10
(
4
), pp.
338
342
.
You do not currently have access to this content.