Abstract

The present paper proposes a neural network-based adaptive region-tracking control strategy for a flexible-joint robot manipulator subjected to region constraints. The developed neural network-based control strategy can globally stabilize the robot manipulator and cope with model uncertainties and the external unknown bounded disturbances. Different from the existing literature, by using the sliding mode technology and the singular perturbation theory, the developed control strategy does not require the high-order derivatives of the link states such as jerk and acceleration since the high-order derivative information is not always available in practical applications. By using Lyapunov stability theory, it is proved that the proposed neural network-based control strategy can guarantee that all the parameter variables in the closed-loop system are bounded, and the flexible-joint robot manipulator with unknown dynamics can reach inside the dynamic region and also maintain the velocity matching with the desired moving region. Since the assumption of linearization of the unknown dynamic parameters is removed, the proposed control strategy does not require the calculation of the complex regression matrix. Therefore, the proposed method has great robustness and the ability of model generalization. Simulations are given to demonstrate the validity of the proposed control strategy.

References

1.
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2021
, “
Minimally Model-Based Trajectory Tracking and Variable Impedance Control of Flexible-Joint Robots
,”
IEEE Trans. Ind. Electron.
,
68
(
7
), pp.
6031
6041
.10.1109/TIE.2020.2994886
2.
Ling
,
S.
,
Wang
,
H.
, and
Liu
,
P. X.
,
2020
, “
Adaptive Fuzzy Tracking Control of Flexible-Joint Robots Based on Command Filtering
,”
IEEE Trans. Ind. Electron.
,
67
(
5
), pp.
4046
4055
.10.1109/TIE.2019.2920599
3.
Daafouz
,
J.
,
Garcia
,
G.
, and
Bernussou
,
J.
,
1998
, “
Robust Control of a Flexible Robot Arm Using the Quadratic d-Stability Approach
,”
IEEE Trans. Control Syst. Technol.
,
6
(
4
), pp.
524
533
.10.1109/87.701347
4.
Tian
,
L.
,
Wang
,
J.
, and
Mao
,
Z.
,
2004
, “
Constrained Motion Control of Flexible Robot Manipulators Based on Recurrent Neural Networks
,”
IEEE Trans. Syst., Man Cybern., Part B (Cybern.)
,
34
(
3
), pp.
1541
1552
.10.1109/TSMCB.2004.826400
5.
Roy
,
S.
,
Baldi
,
S.
,
Li
,
P.
, and
Sankaranarayanan
,
V. N.
,
2021
, “
Artificial-Delay Adaptive Control for Underactuated Euler-Lagrange Robotics
,”
IEEE/ASME Trans. Mechatron.
,
26
(
6
), pp.
3064
3075
.10.1109/TMECH.2021.3052068
6.
Liu
,
L.
,
Yao
,
W.
, and
Guo
,
Y.
,
2021
, “
Prescribed Performance Tracking Control of a Free-Flying Flexible-Joint Space Robot With Disturbances Under Input Saturation
,”
J. Franklin Inst.
,
358
(
9
), pp.
4571
4601
.10.1016/j.jfranklin.2021.03.001
7.
Spong
,
M.
,
1987
, “
Modeling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
109
(
4
), pp.
310
318
.10.1115/1.3143860
8.
Cristofaro
,
A.
,
De Luca
,
A.
, and
Lanari
,
L.
,
2021
, “
Linear-Quadratic Optimal Boundary Control of a One-Link Flexible Arm
,”
IEEE Control Syst. Lett.
,
5
(
3
), pp.
833
838
.10.1109/LCSYS.2020.3006714
9.
Wai
,
R.-J.
, and
Lee
,
M.-C.
,
2004
, “
Intelligent Optimal Control of Single-Link Flexible Robot Arm
,”
IEEE Trans. Ind. Electron.
,
51
(
1
), pp.
201
220
.10.1109/TIE.2003.821895
10.
Kim
,
J.
, and
Croft
,
E. A.
,
2019
, “
Full-State Tracking Control for Flexible Joint Robots With Singular Perturbation Techniques
,”
IEEE Trans. Control Syst. Technol.
,
27
(
1
), pp.
63
73
.10.1109/TCST.2017.2756962
11.
Tomei
,
P.
,
1994
, “
Tracking Control of Flexible Joint Robots With Uncertain Parameters and Disturbances
,”
IEEE Trans. Autom. Control
,
39
(
5
), pp.
1067
1072
.10.1109/9.284895
12.
Celentano
,
L.
, and
Coppola
,
A.
,
2011
, “
A Computationally Efficient Method for Modeling Flexible Robots Based on the Assumed Modes Method
,”
Appl. Math. Comput.
,
218
(
8
), pp.
4483
4493
.10.1016/j.amc.2011.10.029
13.
Zaare
,
S.
, and
Soltanpour
,
M. R.
,
2020
, “
Continuous Fuzzy Nonsingular Terminal Sliding Mode Control of Flexible Joints Robot Manipulators Based on Nonlinear Finite Time Observer in the Presence of Matched and Mismatched Uncertainties
,”
J. Franklin Inst.
,
357
(
11
), pp.
6539
6570
.10.1016/j.jfranklin.2020.04.001
14.
Nikdel
,
P.
,
Hosseinpour
,
M.
,
Badamchizadeh
,
M.
, and
Akbari
,
M.
,
2014
, “
Improved Takagi-Sugeno Fuzzy Model-Based Control of Flexible Joint Robot Via Hybrid-Taguchi Genetic Algorithm
,”
Eng. Appl. Artif. Intell.
,
33
, pp.
12
20
.10.1016/j.engappai.2014.03.009
15.
Spong
,
M.
,
Khorasani
,
K.
, and
Kokotovic
,
P.
,
1987
, “
An Integral Manifold Approach to the Feedback Control of Flexible Joint Robots
,”
IEEE J. Rob. Autom.
,
3
(
4
), pp.
291
300
.10.1109/JRA.1987.1087102
16.
Liu
,
Y.-C.
, and
Chopra
,
N.
,
2014
, “
On Stability and Regulation Performance for Flexible-Joint Robots With Input/Output Communication Delays
,”
Automatica
,
50
(
6
), pp.
1698
1705
.10.1016/j.automatica.2014.04.022
17.
Liu
,
C.
,
Cheah
,
C. C.
, and
Slotine
,
J.-J.
,
2006
, “
Adaptive Task-Space Regulation of Rigid-Link Flexible-Joint Robots With Uncertain Kinematic
,”
Proceedings of IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
1806
1814
.10.1109/ROBOT.2006.1642088
18.
Keppler
,
M.
,
Raschel
,
C.
,
Wandinger
,
D.
,
Stemmer
,
A.
, and
Ott
,
C.
,
2022
, “
Robust Stabilization of Elastic Joint Robots by Esp and Pid Control: Theory and Experiments
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
8283
8290
.10.1109/LRA.2022.3187277
19.
Spyrakos-Papastavridis
,
E.
,
Fu
,
Z.
, and
Dai
,
J. S.
,
2022
, “
Power-Shaping Model-Based Control With Feedback Deactivation for Flexible-Joint Robot Interaction
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
4566
4573
.10.1109/LRA.2022.3144781
20.
Rsetam
,
K.
,
Cao
,
Z.
, and
Man
,
Z.
,
2022
, “
Design of Robust Terminal Sliding Mode Control for Underactuated Flexible Joint Robot
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
52
(
7
), pp.
4272
4285
.10.1109/TSMC.2021.3096835
21.
Cheah
,
C. C.
,
Hou
,
S. P.
, and
Slotine
,
J. J. E.
,
2009
, “
Region-Based Shape Control for a Swarm of Robots
,”
Automatica
,
45
(
10
), pp.
2406
2411
.10.1016/j.automatica.2009.06.026
22.
Yu
,
J.
,
Ji
,
J.
,
Miao
,
Z.
, and
Zhou
,
J.
,
2019
, “
Neural Network-Based Region Reaching Formation Control for Multi-Robot Systems in Obstacle Environment
,”
Neurocomputing
,
333
, pp.
11
21
.10.1016/j.neucom.2018.12.051
23.
Yang
,
G.
,
Yao
,
J.
, and
Ullah
,
N.
,
2022
, “
Neuroadaptive Control of Saturated Nonlinear Systems With Disturbance Compensation
,”
ISA Trans.
,
122
, pp.
49
62
.10.1016/j.isatra.2021.04.017
24.
Wang
,
Y.
,
Zhang
,
T.
,
Li
,
J.
, and
Ren
,
J.
,
2022
, “
Neural Network-Based Adaptive Event-Triggered Sliding Mode Control for Singular Systems With an Adaptive Event-Triggering Communication Scheme
,”
ISA Trans.
,
129
(
Part B
), pp.
15
27
.10.1016/j.isatra.2022.02.020
25.
Ding
,
R.
,
Ding
,
C.
,
Xu
,
Y.
,
Liu
,
W.
, and
Yang
,
X.
,
2022
, “
Neural Network-Based Robust Integral Error Sign Control for Servo Motor Systems With Enhanced Disturbance Rejection Performance
,”
ISA Trans.
,
129
(
Part A
), pp.
580
591
.10.1016/j.isatra.2021.12.026
26.
Chen
,
M.
,
Ge
,
S. S.
, and
How
,
B. V. E.
,
2010
, “
Robust Adaptive Neural Network Control for a Class of Uncertain Mimo Nonlinear Systems With Input Nonlinearities
,”
IEEE Trans. Neural Network
,
21
(
5
), pp.
796
812
.10.1109/TNN.2010.2042611
27.
Zhou
,
X.
,
Tian
,
Y.
, and
Wang
,
H.
,
2022
, “
Neural Network State Observer-Based Robust Adaptive Fault-Tolerant Quantized Iterative Learning Control for the Rigid-Flexible Coupled Robotic Systems With Unknown Time Delays
,”
Appl. Math. Comput.
,
430
, p.
127286
.10.1016/j.amc.2022.127286
28.
Liu
,
X.
,
Yang
,
C.
,
Chen
,
Z.
,
Wang
,
M.
, and
Su
,
C.-Y.
,
2018
, “
Neuro-Adaptive Observer Based Control of Flexible Joint Robot
,”
Neurocomputing
,
275
, pp.
73
82
.10.1016/j.neucom.2017.05.011
29.
Razmi
,
M.
, and
Macnab
,
C.
,
2020
, “
Near-Optimal Neural-Network Robot Control With Adaptive Gravity Compensation
,”
Neurocomputing
,
389
, pp.
83
92
.10.1016/j.neucom.2020.01.026
30.
Cheng
,
X.
,
Zhang
,
Y.
,
Liu
,
H.
,
Wollherr
,
D.
, and
Buss
,
M.
,
2021
, “
Adaptive Neural Back Stepping Control for Flexible-Joint Robot Manipulator With Bounded Torque Inputs
,”
Neurocomputing
,
458
, pp.
70
86
.10.1016/j.neucom.2021.06.013
31.
Ge
,
S.
, and
Woon
,
L.
,
1998
, “
Adaptive Neural Network Control of Flexible Joint Manipulators in Constrained Motion
,”
Trans. Inst. Meas. Control
,
20
(
1
), pp.
37
46
.10.1177/014233129802000106
32.
Peng
,
J.
,
Ni
,
Y.
, and
Qiao
,
H.
,
2007
, “
Neural Network Control of Flexible-Joint Robot Manipulators
,”
ACTA Automatica Sin.
,
33
(
2
), pp.
175
180
.10.1360/aas-007-0175
33.
He
,
W.
,
Yan
,
Z.
,
Sun
,
Y.
,
Ou
,
Y.
, and
Sun
,
C.
,
2018
, “
Neural-Learning-Based Control for a Constrained Robotic Manipulator With Flexible Joints
,”
IEEE Trans. Neural Networks Learn. Syst.
,
29
(
12
), pp.
5993
6003
.10.1109/TNNLS.2018.2803167
34.
Yan
,
Z.
,
Lai
,
X.
,
Meng
,
Q.
, and
Wu
,
M.
,
2021
, “
A Novel Robust Control Method for Motion Control of Uncertain Single-Link Flexible-Joint Manipulator
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
51
(
3
), pp.
1671
1678
.10.1109/TSMC.2019.2900502
35.
Zhang
,
W.
,
Shen
,
J.
,
Ye
,
X.
, and
Zhou
,
S.
,
2022
, “
Error Model-Oriented Vibration Suppression Control of Free-Floating Space Robot With Flexible Joints Based on Adaptive Neural Network
,”
Eng. Appl. Artif. Intell.
,
114
, p.
105028
.10.1016/j.engappai.2022.105028
36.
Cao
,
F.
, and
Liu
,
J.
,
2020
, “
Three-Dimensional Modeling and Input Saturation Control for a Two-Link Flexible Manipulator Based on Infinite Dimensional Model
,”
J. Franklin Inst.
,
357
(
2
), pp.
1026
1042
.10.1016/j.jfranklin.2019.10.018
37.
Sun
,
T.
,
Zhang
,
X.
,
Yang
,
H.
, and
Pan
,
Y.
,
2022
, “
Singular Perturbation-Based Saturated Adaptive Control for Underactuated Euler-Lagrange Systems
,”
ISA Trans.
,
119
, pp.
74
80
.10.1016/j.isatra.2021.02.036
38.
Peza-Solis
,
J.
,
Silva-Navarro
,
G.
,
Garcia-Perez
,
O.
, and
Trujillo-Franco
,
L.
,
2022
, “
Trajectory Tracking of a Single Flexible-Link Robot Using a Modal Cascaded-Type Control
,”
Appl. Math. Modell.
,
104
, pp.
531
547
.10.1016/j.apm.2021.12.002
39.
Nasiri
,
N.
,
Fakharian
,
A.
, and
Menhaj
,
M. B.
,
2021
, “
A Novel Controller for Nonlinear Uncertain Systems Using a Combination of Sdre and Function Approximation Technique: Regulation and Tracking of Flexible-Joint Manipulators
,”
J. Franklin Inst.
,
358
(
10
), pp.
5185
5212
.10.1016/j.jfranklin.2021.04.037
40.
Ghahramani
,
N. O.
, and
Towhidkhah
,
F.
,
2009
, “
Constrained Incremental Predictive Controller Design for a Flexible Joint Robot
,”
ISA Trans.
,
48
(
3
), pp.
321
326
.10.1016/j.isatra.2009.01.010
41.
Liu
,
H.
, and
Huang
,
Y.
,
2018
, “
Robust Adaptive Output Feedback Tracking Control for Flexible-Joint Robot Manipulators Based on Singularly Perturbed Decoupling
,”
Robotica
,
36
(
6
), pp.
822
838
.10.1017/S0263574718000061
42.
Caverly
,
R. J.
,
Zlotnik
,
D. E.
,
Bridgeman
,
L. J.
, and
Forbes
,
J. R.
,
2014
, “
Saturated Proportional Derivative Control of Flexible-Joint Manipulators
,”
Rob. Comput. Integr. Manuf.
,
30
(
6
), pp.
658
666
.10.1016/j.rcim.2014.06.001
43.
Zhao
,
Z.-Y.
,
Jin
,
X.-Z.
,
Wu
,
X.-M.
,
Wang
,
H.
, and
Chi
,
J.
,
2022
, “
Neural Network-Based Fixed-Time Sliding Mode Control for a Class of Nonlinear Euler-Lagrange Systems
,”
Appl. Math. Comput.
,
415
, p.
126718
.10.1016/j.amc.2021.126718
44.
Cui
,
M.
, and
Wu
,
Z.
,
2019
, “
Trajectory Tracking of Flexible Joint Manipulators Actuated by dc-Motors Under Random Disturbances
,”
J. Franklin Inst.
,
356
(
16
), pp.
9330
9343
.10.1016/j.jfranklin.2019.08.038
45.
Madani
,
M.
, and
Moallem
,
M.
,
2011
, “
Hybrid Position/Force Control of a Flexible Parallel Manipulator
,”
J. Franklin Inst.
,
348
(
6
), pp.
999
1012
.10.1016/j.jfranklin.2011.03.005
46.
Feliu-Talegon
,
D.
,
Feliu-Batlle
,
V.
,
Tejado
,
I.
,
Vinagre
,
B. M.
, and
HosseinNia
,
S. H.
,
2019
, “
Stable Force Control and Contact Transition of a Single Link Flexible Robot Using a Fractional-Order Controller
,”
ISA Trans.
,
89
, pp.
139
157
.10.1016/j.isatra.2018.12.031
You do not currently have access to this content.