Abstract

As a semi-analytical approach, the incremental harmonic balance (IHB) method is widely implemented for solving steady-state (including both periodic and quasi-periodic) responses through an iteration process. The iteration is carried out through a Jacobian matrix (JM) and a residual vector, both updated in each iteration. Though the JM is known to be singular at certain bifurcation points, the singularity is still an open question and could play a pivotal role in real applications. In this study, we define and calculate an expanded JM (EJM) by applying an expanded solution expression in the IHB iteration. The singularity of the EJM at several different bifurcation points is proved in a general manner, according to the bifurcation theory for equilibria in nonlinear dynamical systems. Given the possible bifurcation type, furthermore, the singularity is applied to locate the corresponding bifurcation point directly and precisely. Considered are the cases of the period-doubling, symmetry breaking, and Neimark-Sacker bifurcations of periodic and/or quasi-periodic responses.

References

1.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
.10.1115/1.3157762
2.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1983
, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear System
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
871
876
.10.1115/1.3167160
3.
Ferri
,
A. A.
,
1986
, “
On the Equivalence of the Incremental Harmonic Balance Method and the Harmonic balance-Newton Raphson Method
,”
ASME J. Appl. Mech.
,
53
(
2
), pp.
455
457
.10.1115/1.3171780
4.
Shen
,
J. H.
,
Lin
,
K. C.
,
Chen
,
S. H.
, and
Sze
,
K. Y.
,
2008
, “
Bifurcation and Route-to-Chaos Analyses for Mathieu–Duffing Oscillator by the Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
52
(
4
), pp.
403
414
.10.1007/s11071-007-9289-z
5.
Zheng
,
Z. C.
,
Lu
,
Z. R.
,
Liu
,
G.
, and
Chen
,
Y. M.
,
2022
, “
Twice Harmonic Balance Method for Stability and Bifurcation Analysis of Quasi-Periodic Responses
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
12
), p.
121006
.10.1115/1.4055923
6.
Raghothama
,
A.
, and
Narayanan
,
S.
,
1999
, “
Non-Linear Dynamics of a Two Dimensional Airfoil by Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
226
(
3
), pp.
493
517
.10.1006/jsvi.1999.2260
7.
Wu
,
G. Y.
,
2013
, “
Non-Linear Vibration of Bimaterial Magneto-Elastic Cantilever Beam With Thermal Loading
,”
Int. J. Non-Linear Mech.
,
55
, pp.
10
18
.10.1016/j.ijnonlinmec.2013.04.009
8.
Ju
,
R.
,
Fan
,
W.
,
Zhu
,
W. D.
, and
Huang
,
J. L.
,
2017
, “
A Modified Two-Timescale Incremental Harmonic Balance Method for Steady-State Quasi-Periodic Responses of Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051007
.10.1115/1.4036118
9.
Chen
,
Y. M.
,
Liu
,
Q. X.
, and
Liu
,
J. K.
,
2020
, “
A Study on Multi-Frequency Patterns in Nonlinear Network Oscillators Using Incremental Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
121
, p.
103435
.10.1016/j.ijnonlinmec.2020.103435
10.
Ma
,
W. L.
,
Li
,
Y.
, and
Wang
,
M. Q.
,
2023
, “
Study on the Dynamics of Two-Degree-of-Freedom Fractional Differential Piecewise Nonlinear Systems Under Harmonic Excitation
,”
Int. J. Non-Linear Mech.
,
149
, p.
104302
.10.1016/j.ijnonlinmec.2022.104302
11.
Sun
,
P.
,
Zhao
,
X. L.
,
Yu
,
X. F.
,
Huang
,
Q.
,
Feng
,
Z. P.
, and
Zhou
,
J. X.
,
2023
, “
Incremental Harmonic Balance Method for Multi-Harmonic Solution of High-Dimensional Delay Differential Equations: Application to Cross Flow-Induced Nonlinear Vibration of Steam Generator Tubes
,”
Appl. Math. Modell.
,
118
, pp.
818
831
.10.1016/j.apm.2023.02.018
12.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2021
, “
Comparison Between the Incremental Harmonic Balance Method and Alternating Frequency/Time-Domain Method
,”
ASME J. Vib. Acoust.
,
143
(
2
), pp.
1
24
.10.1115/1.4048173
13.
Wu
,
H.
,
Zeng
,
X.
,
Liu
,
Y.
, and
Lai
,
J.
,
2021
, “
Analysis of Harmonically Forced Duffing Oscillator With Time Delay State Feedback by Incremental Harmonic Balance Method
,”
J. Vib. Eng. Tech.
,
9
(
6
), pp.
1239
1251
.10.1007/s42417-021-00293-y
14.
Wang
,
Y.
,
Zhang
,
L.
, and
Zhou
,
J.
,
2020
, “
Incremental Harmonic Balance Method for Periodic Forced Oscillation of a Dielectric Elastomer Balloon
,”
Appl. Math. Mech.
,
41
(
3
), pp.
459
470
.10.1007/s10483-020-2590-7
15.
Ri
,
K.
,
Han
,
W. J.
,
Pak
,
C.
,
Kim
,
K.
, and
Yun
,
C.
,
2021
, “
Nonlinear Forced Vibration Analysis of the Composite Shaft-Disk System Combined the Reduced-Order Model With the IHB Method
,”
Nonlinear Dyn.
,
104
(
4
), pp.
3347
3364
.10.1007/s11071-021-06510-3
16.
Li
,
C. F.
,
Li
,
P. Y.
, and
Miao
,
X. Y.
,
2021
, “
Research on Nonlinear Vibration Control of Laminated Cylindrical Shells With Discontinuous Piezoelectric Layer
,”
Nonlinear Dyn.
,
104
(
4
), pp.
3247
3267
.10.1007/s11071-021-06497-x
17.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2017
, “
A New Incremental Harmonic Balance Method With Two Time Scales for Quasi-Periodic Motions of an Axially Moving Beam With Internal Resonance Under Single-Tone External Excitation
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021010
.10.1115/1.4035135
18.
Liu
,
G.
,
Lv
,
Z. R.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2018
, “
Quasi-Periodic Aeroelastic Response Analysis of an Airfoil With External Store by Incremental Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
100
, pp.
10
19
.10.1016/j.ijnonlinmec.2018.01.004
19.
Fontanela
,
F.
,
Grolet
,
A.
,
Salles
,
L.
, and
Hoffmann
,
N.
,
2019
, “
Computation of Quasi-Periodic Localised Vibrations in Nonlinear Cyclic and Symmetric Structures Using Harmonic Balance Methods
,”
J. Sound Vib.
,
438
, pp.
54
65
.10.1016/j.jsv.2018.09.002
20.
Huang
,
J. L.
,
Wang
,
T.
, and
Zhu
,
W. D.
,
2021
, “
An Incremental Harmonic Balance Method With Two Time-Scales for Quasi-Periodic Responses of a Van Der Pol–Mathieu Equation
,”
Int. J. Non-Linear Mech.
,
135
, p.
103767
.10.1016/j.ijnonlinmec.2021.103767
21.
Ri
,
K.
,
Jang
,
J.
,
Yun
,
C.
,
Pak
,
C.
, and
Kim
,
K.
,
2022
, “
Analysis of Subharmonic and Quasi-Periodic Vibrations of a Jeffcott Rotor Supported on a Squeeze-Film Damper by the IHB Method
,”
AIP Adv.
,
12
(
5
), p.
055328
.10.1063/5.0088334
22.
Leung
,
A. Y. T.
, and
Chui
,
S. K.
,
1995
, “
Nonlinear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
181
(
4
), pp.
619
633
.10.1006/jsvi.1995.0162
23.
Lu
,
W.
,
Ge
,
F.
,
Wu
,
X. D.
, and
Hong
,
Y. S.
,
2013
, “
Nonlinear Dynamics of a Submerged Floating Moored Structure by Incremental Harmonic Balance Method With FFT
,”
Mar. Struct
,
31
, pp.
63
81
.10.1016/j.marstruc.2013.01.002
24.
Leung
,
A. Y. T.
, and
Ge
,
T.
,
1995
, “
Toeplitz Jacobian Matrix for Nonlinear Periodic Vibration
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
709
717
.10.1115/1.2897004
25.
Wang
,
X. F.
,
Zhao
,
X.
, and
Zhu
,
W. D.
,
2019
, “
An Incremental Harmonic Balance Method With a General Formula of Jacobian Matrix and a Direct Construction Method in Stability Analysis of Periodic Responses of General Nonlinear Delay Differential Equations
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061011
.10.1115/1.4042836
26.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2015
, “
A Modified Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Broyden's Method
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
981
989
.10.1007/s11071-015-2045-x
27.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2020
, “
An Efficient Galerkin Averaging-Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Tensor Contraction
,”
ASME J. Vib. Acoust.
,
142
(
6
), p.
061011
.10.1115/1.4047235
28.
Dimitriadis
,
G.
,
2008
, “
Continuation of Higher-Order Harmonic Balance Solutions for Nonlinear Aeroelastic Systems
,”
J. Aircr.
,
45
(
2
), pp.
523
537
.10.2514/1.30472
29.
Yuan
,
T. C.
,
Yang
,
J.
, and
Chen
,
L. Q.
,
2019
, “
Nonlinear Vibration Analysis of a Circular Composite Plate Harvester Via Harmonic Balance
,”
Acta Mech. Sin.
,
35
(
4
), pp.
912
925
.10.1007/s10409-019-00863-0
30.
Dunne
,
J. F.
,
2006
, “
Subharmonic-Response Computation and Stability Analysis for a Nonlinear Oscillator Using a Split-Frequency Harmonic Balance Method
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
221
229
.10.1115/1.2198875
31.
Liu
,
L.
,
Wong
,
Y. S.
, and
Lee
,
B. H. K.
,
2000
, “
Application of the Center Manifold Theory in Nonlinear Aeroelasticity
,”
J. Sound Vib.
,
234
(
4
), pp.
641
659
.10.1006/jsvi.1999.2895
32.
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2008
, “
Supercritical as Well as Subcritical Hopf Bifurcation in Nonlinear Flutter Systems
,”
Appl. Math. Mech.
,
29
(
2
), pp.
199
206
.10.1007/s10483-008-0207-x
33.
Agnihotri
,
K.
, and
Kaur
,
H.
,
2019
, “
The Dynamics of Viral Infection in Toxin Producing Phytoplankton and Zooplankton System With Time Delay
,”
Chaos, Solitons Fract.
,
118
, pp.
122
133
.10.1016/j.chaos.2018.11.018
34.
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2016
, “
A Precise Calculation of Bifurcation Points for Periodic Solution in Nonlinear Dynamical Systems
,”
Appl. Math. Comput.
,
273
, pp.
1190
1195
.10.1016/j.amc.2015.08.130
35.
Yuan
,
T. C.
,
Yang
,
J.
, and
Chen
,
L. Q.
,
2019
, “
A Harmonic Balance Approach With Alternating Frequency Time Domain Progress for Piezoelectric Mechanical Systems
,”
Mech. Syst. Signal Process.
,
120
, pp.
274
289
.10.1016/j.ymssp.2018.10.022
36.
Traversa
,
F. L.
,
Bonani
,
F.
, and
Guerrieri
,
S. D.
,
2008
, “
A Frequency-Domain Approach to the Analysis of Stability and Bifurcations in Nonlinear Systems Described by Differential-Algebraic Equations
,”
Int. J. Circuit Theory Appl.
,
36
(
4
), pp.
421
439
.10.1002/cta.440
37.
Maggio
,
G. M.
,
Kennedy
,
M. P.
, and
Gilli
,
M.
,
1998
, “
An Approximate Analytical Approach for Predicting Period-Doubling in the Colpitts Oscillator
,”
IEEE International Symposium on Circuits and Systems (ISCAS1998),
Monterey, CA, May 31–June 3, Vol.
3
, pp.
671
674
.
38.
Bonani
,
F.
, and
Gilli
,
M.
,
1999
, “
Analysis of Stability and Bifurcations of Limit Cycles in Chua's Circuit Through the Harmonic-Balance Approach
,”
IEEE Tran. Circuits Syst.-I: Fundam. Theory Appl.
,
46
(
8
), pp.
881
890
.10.1109/81.780370
39.
Anastasio
,
D.
, and
Marchesiello
,
S.
,
2023
, “
Nonlinear Frequency Response Curves Estimation and Stability Analysis of Randomly Excited Systems in the Subspace Framework
,”
Nonlinear Dyn.
,
111
(
9
), pp.
8115
8133
.10.1007/s11071-023-08280-6
40.
Bayer
,
F.
, and
Leine
,
R. I.
,
2023
, “
Sorting-Free Hill-Based Stability Analysis of Periodic Solutions Through Koopman Analysis
,”
Nonlinear Dyn.
,
111
(
9
), pp.
8439
8466
.10.1007/s11071-023-08247-7
41.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
296
, pp.
18
38
.10.1016/j.cma.2015.07.017
42.
Melot
,
A.
,
Rigaud
,
E.
, and
Liaudet
,
J. P.
,
2023
, “
Robust Design of Vibro-Impacting Geared Systems With Uncertain Tooth Profile Modifications Via Bifurcation Tracking
,”
Int. J. Nonlinear Mech.
,
149
, p.
104336
.10.1016/j.ijnonlinmec.2022.104336
43.
Melot
,
A.
,
Rigaud
,
E.
, and
Liaudet
,
J. P.
,
2022
, “
Bifurcation Tracking of Geared Systems With Parameter-Dependent Internal Excitation
,”
Nonlinear Dyn.
,
107
(
1
), pp.
413
431
.10.1007/s11071-021-07018-6
44.
Xie
,
L.
,
Baguet
,
S.
,
Prabel
,
B.
, and
Dufour
,
R.
,
2017
, “
Bifurcation Tracking by Harmonic Balance Method for Performance Tuning of Nonlinear Dynamical Systems
,”
Mech. Syst. Signal Process.
,
88
, pp.
445
461
.10.1016/j.ymssp.2016.09.037
45.
Alcorta
,
R.
,
Baguet
,
S.
,
Prabel
,
B.
,
Piteau
,
P.
, and
Richardet
,
G. J.
,
2019
, “
Period Doubling Bifurcation Analysis and Isolated Sub-Harmonic Resonances in an Oscillator With Asymmetric Clearances
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2939
2960
.10.1007/s11071-019-05245-6
46.
Tehrani
,
G. G.
,
Gastaldi
,
C.
, and
Berruti
,
T. M.
,
2021
, “
A Forced Response-Based Method to Track Instability of Rotating Systems
,”
Eur. J. Mech./A Solids
,
90
, p.
104319
.10.1016/j.euromechsol.2021.104319
47.
Liao
,
H. T.
,
2023
, “
A Nonlinear Optimization Bifurcation Tracking Method Forperiodic Solution of Nonlinear Systems
,”
Mech. Based Des. Struct. Mach.
,
51
(
3
), pp.
1201
1225
.10.1080/15397734.2020.1863230
48.
Renson
,
L.
,
Barton
,
D. A. W.
, and
Neild
,
S. A.
,
2017
, “
Experimental Tracking of Limit-Point Bifurcations and Backbone Curves Using Control-Based Continuation
,”
Int. J. Bifur. Chaos
,
27
(
01
), p.
1730002
.10.1142/S0218127417300026
49.
Basso
,
M.
,
Genesio
,
R.
, and
Tesi
,
A.
,
1997
, “
A Frequency Method for Predicting Limit Cycle Bifurcations
,”
Nonlinear Dyn.
,
13
(
4
), pp.
339
360
.10.1023/A:1008298205786
50.
Lanza
,
V.
,
Bonnin
,
M.
, and
Gilli
,
M.
,
2007
, “
On the Application of the Describing Function Technique to the Bifurcation Analysis of Nonlinear Systems
,”
IEEE Tran. Circuits Syst. II: Express Briefs
,
54
(
4
), pp.
343
347
.10.1109/TCSII.2006.890406
51.
Innocenti
,
G.
,
Di Marco
,
M.
,
Forti
,
M.
, and
Tesi
,
A.
,
2019
, “
Prediction of Period Doubling Bifurcations in Harmonically Forced Memristor Circuits
,”
Nonlinear Dyn.
,
96
(
2
), pp.
1169
1190
.10.1007/s11071-019-04847-4
52.
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2023
, “
Circularly Distributed Multipliers With Deterministic Modulus Assessing the Stability of Quasiperiodic Responses
,”
Phys. Rev. E
,
107
(
1
), p.
014218
.10.1103/PhysRevE.107.014218
53.
Olson
,
C. L.
, and
Olsson
,
M. G.
,
1991
, “
Dynamical Symmetry Breaking and Chaos in Duffing's Equation
,”
Am. J. Phys.
,
59
(
10
), pp.
907
911
.10.1119/1.16669
54.
Schilder
,
F.
,
Vogt
,
W.
,
Schreiber
,
S.
, and
Osinga
,
H. M.
,
2006
, “
Fourier Methods for Quasi-Periodic Oscillations
,”
Int. J. Numer. Methods Eng
,.
67
(
5
), pp.
629
671
.10.1002/nme.1632
55.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2013
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer Science & Business Media
, New York.
You do not currently have access to this content.