Dimension reduction of dynamical system is a significant issue for technical applications, as regards both finite dimensional system and infinite dimensional systems emerging from either science or engineering. Center manifold method is one of the main reduction methods for ordinary differential systems (ODSs). Does there exists a similar method for fractional ODSs (FODSs)? In other words, does there exists a method for reducing the high-dimensional FODS into a lower-dimensional FODS? In this study, we establish a local fractional center manifold for a finite dimensional FODS. Several examples are given to illustrate the theoretical analysis.

References

1.
Torvik
,
P. J.
, and
Bagley
,
R. L.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
294
298
.
2.
Riewe
,
F.
,
1997
, “
Mechanics With Fractional Derivatives
,”
Phys. Rev. E
,
55
(
3
), pp.
3582
3592
.
3.
Atanackovi
,
T. M.
, and
Stankovic
,
B.
,
2004
, “
Stability of an Elastic Rod on a Fractional Derivative Type of Foundation
,”
J. Sound Vib.
,
277
(
1
), pp.
149
161
.
4.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
5.
Li
,
C. P.
, and
Zeng
,
F. H.
,
2015
,
Numerical Methods for Fractional Calculus
,
Chapman and Hall/CRC
,
New York
.
6.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D. Y.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer-Verlag
,
London
.
7.
Margin
,
R. L.
,
2006
,
Fractional Calculus in Bioengineering
,
Begell House
,
New York
.
8.
Cong
,
N. D.
,
Doan
,
T. S.
,
Siegmund
,
S.
, and
Tuan
,
H. T.
,
2014
, “
On Stable Manifolds for Planar Fractional Differential Equations
,”
Appl. Math. Comput.
,
226
(
1
), pp.
157
168
.
9.
Li
,
C. P.
,
Gong
,
Z. Q.
,
Qian
,
D. L.
, and
Chen
,
Y. Q.
,
2010
, “
On the Bound of the Lyapunov Exponents for the Fractional Differential Systems
,”
Chaos
,
20
(
1
), p.
013127
.
10.
Rega
,
G.
, and
Troger
,
H.
,
2005
, “
Dimension Reduction of Dynamical Systems: Methods, Models, Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
1
15
.
11.
Chow
,
S. N.
, and
Hale
,
J. K.
,
1982
,
Methods of Bifurcation Theory
,
Springer-Verlag
,
New York
, pp.
312
322
.
12.
Rémi
,
V.
, and
Andrei
,
L. S.
,
1993
,
Asymptotic Methods in Mechanics
,
American Mathematical Society
,
Providence, RI
, pp.
109
120
.
13.
Pliss
,
V. A.
,
1964
, “
A Reduction Principle in the Theory of Stability of Motion
,”
J. Izv. Akad. Nauk SSSR Ser. Mat.
,
28
(
6
), pp.
1297
1324
.
14.
Kelley
,
A.
,
1967
, “
The Stable, Center Stable, Center, Center Unstable and Unstable Manifolds
,”
J. Differ. Equations
,
3
(
4
), pp.
546
570
.
15.
Carr
,
J.
,
1981
,
Applications of Centre Manifold Theory
,
Springer-Verlag
,
New York
, pp.
1
36
.
16.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer-Verlag
,
Berlin, Germany
.
17.
Vanderbauwhede
,
A.
,
1989
, “
Center Manifolds, Normal Forms and Elementary Bifurcations
,”
Dynamics Reported
,
U.
Kirchgraber
and
H. O.
Walther
, eds.,
Vieweg+Teubner Verlag
, Wiesbaden, pp.
89
169
.
18.
Jolly
,
M. S.
, and
Rosa
,
R.
,
2005
, “
Computation of Non-Smooth Local Centre Manifolds
,”
IMA J. Numer. Anal.
,
25
(
4
), pp.
698
725
.
19.
Charles
,
L.
, and
Wiggins
,
S.
,
1997
,
Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations
,
Springer-Verlag
,
New York
, pp.
4
12
.
20.
Gerhard
,
D.
,
Bernold
,
F.
,
Klaus
,
K.
, and
Alexander
,
M.
,
1996
,
Dynamics of Nonlinear Waves in Dissipative Systems Reduction, Bifurcation and Stability
,
Chapman and Hall/CRC
,
London
.
21.
Haken
,
H.
,
2004
,
Synergetics: Introduction and Advanced Topics
,
Springer
,
Berlin, Germany
.
22.
Meyer
,
C. D.
,
2000
,
Matrix Analysis and Applied Linear Algebra
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
23.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier Science
,
Amsterdam, The Netherlands
.
24.
Gorenflo
,
R.
,
Kilbas
,
A. A.
,
Mainardi
,
F.
, and
Rogosin
,
S. V.
,
2014
,
Mittag–Leffler Functions, Related Topics and Applications
,
Springer-Verlag
,
Berlin, Heidelberg, Germany
.
25.
Gorenflo
,
R.
,
Loutchko
,
J.
, and
Luchko
,
Y.
,
2002
, “
Computation of the Mittag-Leffler Function Eα,β and Its Derivative
,”
Fractional Calculus Appl. Anal.
,
5
(
4
), pp.
491
518
.
26.
Sandor
,
J.
,
2005
, “
A Note on Certain Inequalities for the Gamma Function
,”
J. Inequalities Pure Appl. Math.
,
6
(
3
), p.
61
.
27.
Samko
,
S. G.
,
Kilbas
,
A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach Science
,
Yverdon, Switzerland
.
28.
Dixon
,
J.
, and
Mckee
,
S.
,
1986
, “
Weakly Singular Discrete Gronwall Inequalities
,”
ZAMM-J. Appl. Math. Mech.
,
66
(
11
), pp.
535
544
.
29.
Li
,
C. P.
, and
Ma
,
Y. T.
,
2013
, “
Fractional Dynamical System and Its Linearization Theorem
,”
Nonlinear Dyn.
,
71
(
4
), pp.
621
633
.
30.
Kilbas
,
A. A.
, and
Marzan
,
S. A.
,
2005
, “
Nonlinear Differential Equations With the Caputo Fractional Derivative in the Space of Continuously Differentiable Functions
,”
Diff. Equations
,
41
(
1
), pp.
84
89
.
31.
Coddington
,
E. A.
, and
Levinson
,
N.
,
1955
,
Theory of Ordinary Differential Equations
,
McGraw-Hill
,
New York
, pp.
330
335
.
You do not currently have access to this content.