In this paper, the stick–slip motion of a microrobot with two perpendicular vibrational actuators is studied. This motion is based on the friction drive principle. To determine the effective parameters in the motion of microrobot, the equations of motion of the microrobot are derived. To simplify the equations for determining the design parameters, the vibrational actuators are modeled with two perpendicular harmonic forces. To study the motion dynamics of the microrobot, its equation of motion is derived in a nondimensional expression by defining the nondimensional effective parameters. The Fourier expansion (F.E.) method is used to analyze the numerical results and it showed some differences between the obtained results and the studies performed by the harmonic balance (H.B.) method. The discussion about motion characteristics of microrobot is done by defining the mean velocity and performance coefficient of the stick–slip motion. Finally, a practical model of this microrobot is designed and fabricated with two piezo-electric actuators, and then, the motion capability of the microrobot is verified by test.

References

1.
Ebefors
,
T.
, and
Stemme
,
G.
,
2005
,
Microrobotics, The MEMS Handbook
,
M.
Gad-el Hak
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
28.1
28.42
.
2.
Zhang
,
Z. M.
,
An
,
Q.
,
Li
,
J. W.
, and
Zhang
,
W. J.
,
2012
, “
Piezoelectric Friction–Inertia Actuator—A Critical Review and Future Perspective
,”
Int. J. Adv. Manuf. Technol.
,
62
(
5–8
), pp.
669
685
.
3.
Breguet
,
J.-M.
,
Johansson
,
S.
,
Driesen
,
W.
, and
Simu
,
U.
,
2006
, “
A Review on Actuation Principles for Few Cubic Millimeter Sized Mobile Micro-Robots
,”
10th International Conference on New Actuators (Actuator 2006)
, Bremen, Germany.
4.
Shi
,
Y.
,
Yu
,
Z.
,
Kong
,
L.
, and
Hsu
,
H.-Y.
,
2007
, “
The Locomotion Systems for Self-Propelled Endoscopes: A Review and a New Proposal
,”
5th IASTED International Conference Biomedical Engineering
, Innsbruck, Austria.
5.
Zhang
,
C.
,
Liu
,
H.
, and
Li
,
H.
,
2014
, “
Modeling of Frictional Resistance of a Capsule Robot Moving in the Intestine at a Constant Velocity
,”
Tribol. Lett.
,
53
(
1
), pp.
71
78
.
6.
Driesen
,
W.
,
Rida
,
A.
,
Breguet
,
J.-M.
, and
Clavel
,
R.
,
2007
, “
Friction Based Locomotion Module for Mobile MEMS Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007)
, pp.
3815
3820
.
7.
Rembold
,
U.
, and
Fatikow
,
S.
,
1997
, “
Autonomous Microrobots
,”
J. Intell. Rob. Syst.
,
19
(
4
), pp.
375
391
.
8.
De Ambroggi
,
F.
,
Fortuna
,
L.
, and
Muscato
,
G.
,
1997
, “
PLIF: Piezo Light Intelligent Flea-New Micro-Robots Controlled by Self-Learning Techniques
,”
IEEE International Conference on Robotics and Automation (ICRA 1997)
, pp.
1767
1772
.
9.
Varma
,
V. K.
, and
Dixon
,
W. E.
,
2002
, “
Design of a Piezoelectric Meso-Scale Mobile Robot: A Compliant Amplification Approach
,”
IEEE International Conference on Robotics and Automation (ICRA 2002)
, pp.
1137
1142
.
10.
Breguet
,
J.-M.
, and
Renaud
,
P.
,
1996
, “
A 4-Degrees-of-Freedom Microrobot With Nanometer Resolution
,”
Robotica
,
14
(
2
), pp.
199
203
.
11.
Kim
,
B.
,
Lee
,
M. G.
,
Lee
,
Y. P.
,
Kim
,
Y.
, and
Lee
,
G.
,
2006
, “
An Earthworm-Like Micro Robot Using Shape Memory Alloy Actuator
,”
Sens. Actuators A
,
125
(
2
), pp.
429
437
.
12.
Eigoli
,
A. K.
, and
Vossoughi
,
G. R.
,
2012
, “
Locomotion Modes of a Novel Piezo-Driven Microrobot: Analytical Modeling and Performance Evaluation
,”
Mech. Mach. Theory
,
52
, pp.
248
266
.
13.
Ikegami
,
T.
,
Torii
,
A.
,
Doki
,
K.
, and
Ueda
,
A.
,
2006
, “
Motion Analysis of a Micro-Actuator Using Three Piezoelectric Actuators
,”
International Symposium on Micro-NanoMechatronics and Human Science
, pp.
1
6
.
14.
Donald
,
B. R.
,
Levey
,
C. G.
,
Mcgray
,
C. D.
,
Paprotny
,
I.
, and
Rus
,
D.
,
2006
, “
An Untethered, Electrostatic, Globally Controllable MEMS Micro-Robot
,”
J. Microelectromech. Syst.
,
15
(
1
), pp.
1
15
.
15.
Mohebbi
,
M. H.
,
Terry
,
M. L.
,
Ohringer
,
K. F. B.
,
Kovacs
,
G. T. A.
, and
Suh
,
J. W.
,
2001
, “
Omnidirectional Walking Microrobot Realized by Thermal Microactuator Arrays
,” ASME International Mechanical Engineering Congress and Exposition, New York.
16.
Vartholomeos
,
P.
, and
Papadopoulos
,
E.
,
2006
, “
Analysis, Design and Control of a Planar Micro-Robot Driven by Two Centripetal-Force Actuators
,”
IEEE International Conference on Robotics and Automation (ICRA 2006)
, pp.
649
654
.
17.
Kardan
,
I.
,
Kabganian
,
M.
,
Abiri
,
R.
, and
Bagheri
,
M.
,
2013
, “
Stick-Slip Conditions in the General Motion of a Planar Rigid Body
,”
J. Mech. Sci. Technol.
,
27
(
9
), pp.
2577
2583
.
18.
Pascal
,
M.
,
2008
, “
Dynamics of Coupled Oscillators Excited by Dry Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
3
), p.
031009
.
19.
Chatterjee
,
S.
,
Chatterjee
,
S.
, and
Singha
,
T. K.
,
2005
, “
On the Generation of Steady Motion Using Fast-Vibration
,”
J. Sound Vib.
,
283
(
3–5
), pp.
1187
1204
.
20.
Bowen
,
Z.
,
Sun
,
L.
,
Chen
,
L.
, and
Wang
,
Z.
,
2011
, “
The Dynamics Study of the Stick-Slip Driving System Based on LuGre Dynamic Friction Model
,”
International Conference on Mechatronics and Automation (ICMA)
, pp.
584
589
.
21.
Do
,
N. B.
,
Ferri
,
A. A.
, and
Bauchau
,
O. A.
,
2007
, “
Efficient Simulation of a Dynamic System With LuGre Friction
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
4
), pp.
281
289
.
22.
Ha
,
J.-L.
,
Fung
,
R.-F.
,
Han
,
C.-F.
, and
Chang
,
J.-R.
,
2005
, “
Effects of Frictional Models on the Dynamic Response of the Impact Drive Mechanism
,”
ASME J. Vib. Acoust.
,
128
(
1
), pp.
88
96
.
23.
Eigoli
,
A.
, and
Vossoughi
,
G.
,
2012
, “
Dynamic Analysis of Microrobots With Coulomb Friction Using Harmonic Balance Method
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1357
1371
.
24.
Nishimura
,
T.
,
Hosaka
,
H.
, and
Morita
,
T.
,
2012
, “
Resonant-Type Smooth Impact Drive Mechanism (SIDM) Actuator Using a Bolt-Clamped Langevin Transducer
,”
Ultrasonics
,
52
(
1
), pp.
75
80
.
25.
Burden
,
R. L.
, and
Faires
,
J. D.
,
1993
,
Numerical Analysis
, 5th ed.,
PWS-KENT
,
CENGAGE Learning, Canada
.
You do not currently have access to this content.