Abstract

The objective of this study was to implement a novel fluid-solutes solver into the open-source finite element software FEBio, that extended available modeling capabilities for biological fluids and fluid-solute mixtures. Using a reactive mixture framework, this solver accommodates diffusion, convection, chemical reactions, electrical charge effects, and external body forces, without requiring stabilization methods that were deemed necessary in previous computational implementations of the convection-diffusion-reaction equation at high Peclet numbers. Verification and validation problems demonstrated the ability of this solver to produce solutions for Peclet numbers as high as 1011, spanning the range of physiological conditions for convection-dominated solute transport. This outcome was facilitated by the use of a formulation that accommodates realistic values for solvent compressibility, and by expressing the solute mass balance such that it properly captured convective transport by the solvent and produced a natural boundary condition of zero diffusive solute flux at outflow boundaries. Since this numerical scheme was not necessarily foolproof, guidelines were included to achieve better outcomes that minimize or eliminate the potential occurrence of numerical artifacts. The fluid-solutes solver presented in this study represents an important and novel advancement in the modeling capabilities for biomechanics and biophysics as it allows modeling of mechanobiological processes via the incorporation of chemical reactions involving neutral or charged solutes within dynamic fluid flow. The incorporation of charged solutes in a reactive framework represents a significant novelty of this solver. This framework also applies to a broader range of nonbiological applications.

References

1.
Biasetti
,
J.
,
Spazzini
,
P. G.
,
Swedenborg
,
J.
, and
Gasser
,
T. C.
,
2012
, “
An Integrated Fluid-Chemical Model Toward Modeling the Formation of Intra-Luminal Thrombus in Abdominal Aortic Aneurysms
,”
Front. Physiol.
,
3
, p. 266.10.3389/fphys.2012.00266
2.
Seo
,
J. H.
,
Abd
,
T.
,
George
,
R. T.
, and
Mittal
,
R.
,
2016
, “
A Coupled Chemo-Fluidic Computational Model for Thrombogenesis in Infarcted Left Ventricles
,”
Am. J. Physiol. Heart Circ. Physiol.
,
310
(
11
), pp.
H1567
H1582
.10.1152/ajpheart.00855.2015
3.
Taylor
,
J. O.
,
Meyer
,
R. S.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2016
, “
Development of a Computational Model for Macroscopic Predictions of Device-Induced Thrombosis
,”
Biomech. Model. Mechanobiol.
,
15
(
6
), pp.
1713
1731
.10.1007/s10237-016-0793-2
4.
Rojano
,
R. M.
,
Mendez
,
S.
, and
Nicoud
,
F.
,
2018
, “
Introducing the Pro-Coagulant Contact System in the Numerical Assessment of Device-Related Thrombosis
,”
Biomech. Model. Mechanobiol.
,
17
(
3
), pp.
815
826
.10.1007/s10237-017-0994-3
5.
Moore
,
J. A.
, and
Ethier
,
C. R.
,
1997
, “
Oxygen Mass Transfer Calculations in Large Arteries
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
469
475
.10.1115/1.2798295
6.
McKee
,
S.
,
Dougall
,
E. A.
, and
Mottram
,
N. J.
,
2016
, “
Analytic Solutions of a Simple Advection-Diffusion Model of an Oxygen Transfer Device
,”
J. Math. Ind.
,
6
(
1
), Article No. 3.10.1186/s13362-016-0019-3
7.
Kaesler
,
A.
,
Rosen
,
M.
,
Schmitz-Rode
,
T.
,
Steinseifer
,
U.
, and
Arens
,
J.
,
2018
, “
Computational Modeling of Oxygen Transfer in Artificial Lungs
,”
Artif. Organs
,
42
(
8
), pp.
786
799
.10.1111/aor.13146
8.
Ethier
,
C. R.
,
2002
, “
Computational Modeling of Mass Transfer and Links to Atherosclerosis
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
461
471
.10.1114/1.1468890
9.
Tarbell
,
J. M.
,
2003
, “
Mass Transport in Arteries and the Localization of Atherosclerosis
,”
Annu. Rev. Biomed. Eng.
,
5
(
1
), pp.
79
118
.10.1146/annurev.bioeng.5.040202.121529
10.
Hansen
,
K. B.
,
Arzani
,
A.
, and
Shadden
,
S. C.
,
2018
, “
Finite Element Modeling of Near-Wall Mass Transport in Cardiovascular Flows
,”
Int. J. Numer. Meth. Bio.
,
35
(
1
), p.
e3148
.10.1002/cnm.3148
11.
Yao
,
H.
, and
Gu
,
W. Y.
,
2007
, “
Convection and Diffusion in Charged Hydrated Soft Tissues: A Mixture Theory Approach
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
63
72
.10.1007/s10237-006-0040-3
12.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Tezduyar
,
T. E.
, and
Hughes
,
T. J. R.
,
2007
, “
YZB Discontinuity Capturing for Advection-Dominated Processes With Application to Arterial Drug Delivery
,”
Int. J. Numer. Meth. Fluids
,
54
(
6–8
), pp.
593
608
.10.1002/fld.1484
13.
Swabb
,
E. A.
,
Wei
,
J.
, and
Gullino
,
P. M.
,
1974
, “
Diffusion and Convection in Normal and Neoplastic Tissues
,”
Cancer Research
,
34
(
10
), pp.
2814
2822
.https://aacrjournals.org/cancerres/article/34/10/2814/479947/Diffusion-and-Convection-in-Normal-and-Neoplastic
14.
Yoshihara
,
L.
,
Coroneo
,
M.
,
Comerford
,
A.
,
Bauer
,
G.
,
Klöppel
,
T.
, and
Wall
,
W. A.
,
2014
, “
A Combined Fluid-Structure Interaction and Multi-Field Scalar Transport Model for Simulating Mass Transport in Biomechanics
,”
Int. J. Numer. Meth. Eng.
,
100
(
4
), pp.
277
299
.10.1002/nme.4735
15.
Roos
,
H.-G.
,
Stynes
,
M.
, and
Tobiska
,
L.
,
2008
,
Robust Numerical Methods for Singularly Perturbed Differential Equations
,
Springer Berlin Heidelberg
, Berlin.
16.
Hughes
,
T. J.
,
Franca
,
L. P.
, and
Hulbert
,
G. M.
,
1989
, “
A New Finite Element Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Squares Method for Advective-Diffusive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
73
(
2
), pp.
173
189
.10.1016/0045-7825(89)90111-4
17.
Franca
,
L.
, and
Valentin
,
F.
,
2000
, “
On an Improved Unusual Stabilized Finite Element Method for the Advective–Reactive–Diffusive Equation
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
13–14
), pp.
1785
1800
.10.1016/S0045-7825(00)00190-0
18.
Tezduyar
,
T.
, and
Park
,
Y.
,
1986
, “
Discontinuity-Capturing Finite Element Formulations for Nonlinear Convection-Diffusion-Reaction Equations
,”
Comput. Methods Appl. Mech. Eng.
,
59
(
3
), pp.
307
325
.10.1016/0045-7825(86)90003-4
19.
Zienkiewicz
,
O. C.
, and
Codina
,
R.
,
1995
, “
A General Algorithm for Compressible and Incompressible Flow—Part I. the Split, Characteristic-Based Scheme
,”
Int. J. Numer. Meth. Fluids
,
20
(
8–9
), pp.
869
885
.10.1002/fld.1650200812
20.
Kaazempur-Mofrad
,
M.
,
Minev
,
P.
, and
Ethier
,
C.
,
2003
, “
A Characteristic/Finite Element Algorithm for Time-Dependent 3-D Advection-Dominated Transport Using Unstructured Grids
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
11–12
), pp.
1281
1298
.10.1016/S0045-7825(02)00627-8
21.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.10.1007/s10237-006-0070-x
22.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
23.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.10.1115/1.2894880
24.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.10.1115/1.2798299
25.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2013
, “
Multiphasic Finite Element Framework for Modeling Hydrated Mixtures With Multiple Neutral and Charged Solutes
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111001
.10.1115/1.4024823
26.
Ateshian
,
G. A.
,
Nims
,
R. J.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2014
, “
Computational Modeling of Chemical Reactions and Interstitial Growth and Remodeling Involving Charged Solutes and Solid-Bound Molecules
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1105
1120
.10.1007/s10237-014-0560-1
27.
Ateshian
,
G. A.
,
Shim
,
J. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2018
, “
Finite Element Framework for Computational Fluid Dynamics in FEBio
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
021001
.10.1115/1.4038716
28.
Shim
,
J. J.
, and
Ateshian
,
G. A.
,
2022
, “
A Hybrid Reactive Multiphasic Mixture With a Compressible Fluid Solvent
,”
ASME J. Biomech. Eng.
,
144
(
1
), p.
011013
.10.1115/1.4051926
29.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
30.
Maas
,
S. A.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2017
, “
FEBio: History and Advances
,”
Annu. Rev. Biomed. Eng.
,
19
(
1
), pp.
279
299
.10.1146/annurev-bioeng-071516-044738
31.
Ogston
,
A. G.
, and
Phelps
,
C. F.
,
1961
, “
The Partition of Solutes Between Buffer Solutions and Solutions Containing Hyaluronic Acid
,”
Biochem. J.
,
78
(
4
), pp.
827
833
.10.1042/bj0780827
32.
Laurent
,
T. C.
, and
Killander
,
J.
,
1964
, “
A Theory of Gel Filtration and Its Exeperimental Verification
,”
J. Chromatogr. A
,
14
, pp.
317
330
.10.1016/S0021-9673(00)86637-6
33.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
602
614
.10.1115/1.1611512
34.
Tinoco
,
I.
,
1995
,
Physical Chemistry: Principles and Applications in Biological Sciences
,
Prentice Hall
,
Englewood Cliffs, NJ
.
35.
Ateshian
,
G. A.
,
Albro
,
M. B.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2011
, “
Finite Element Implementation of Mechanochemical Phenomena in Neutral Deformable Porous Media Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081005
.10.1115/1.4004810
36.
McNaught
,
A.
,
1997
,
Compendium of Chemical Terminology: IUPAC Recommendations
,
Blackwell Science
,
Oxford UK Malden, MA
.
37.
Ateshian
,
G. A.
,
2016
, “
Mixture Theory for Modeling Biological Tissues: Illustrations From Articular Cartilage
,”
Studies in Mechanobiology, Tissue Engineering and Biomaterials
,
Springer International Publishing, Cham
, pp.
1
51
.
38.
Bonet
,
D. J.
, and
Wood
,
D. R. D.
,
2008
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
, Cambridge, UK.
39.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-Alpha Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
40.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-Alpha Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.10.1016/S0045-7825(00)00203-6
41.
Shim
,
J. J.
,
Maas
,
S. A.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2019
, “
A Formulation for Fluid–Structure Interactions in FEBio Using Mixture Theory
,”
ASME J. Biomech. Eng.
,
141
(
5
), p.
051010
.10.1115/1.4043031
42.
Bazilevs
,
Y.
,
Gohean
,
J.
,
Hughes
,
T.
,
Moser
,
R.
, and
Zhang
,
Y.
,
2009
, “
Patient-Specific Isogeometric Fluid–Structure Interaction Analysis of Thoracic Aortic Blood Flow Due to Implantation of the Jarvik 2000 Left Ventricular Assist Device
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3534
3550
.10.1016/j.cma.2009.04.015
43.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2015
, “
A bi-Partitioned Iterative Algorithm for Solving Linear Systems Arising From Incompressible Flow Problems
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
40
62
.10.1016/j.cma.2014.11.033
44.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.10.1016/j.cma.2005.04.014
45.
Engelman
,
M. S.
,
Strang
,
G.
, and
Bathe
,
K.-J.
,
1981
, “
The Application of quasi-Newton Methods in Fluid Mechanics
,”
Int. J. Numer. Meth. Eng.
,
17
(
5
), pp.
707
718
.10.1002/nme.1620170505
46.
Netz
,
R. R.
,
2020
, “
Mechanisms of Airborne Infection Via Evaporating and Sedimenting Droplets Produced by Speaking
,”
J. Phys. Chem. B
,
124
(
33
), pp.
7093
7101
.10.1021/acs.jpcb.0c05229
47.
Gregson
,
F. K. A.
,
Watson
,
N. A.
,
Orton
,
C. M.
,
Haddrell
,
A. E.
,
McCarthy
,
L. P.
,
Finnie
,
T. J. R.
,
Gent
,
N.
, et al.,
2021
, “
Comparing Aerosol Concentrations and Particle Size Distributions Generated by Singing, Speaking and Breathing
,”
Aerosol Sci. Technol.
,
55
(
6
), pp.
681
691
.10.1080/02786826.2021.1883544
48.
Chao
,
C.
,
Wan
,
M.
,
Morawska
,
L.
,
Johnson
,
G.
,
Ristovski
,
Z.
,
Hargreaves
,
M.
,
Mengersen
,
K.
,
Corbett
,
S.
,
Li
,
Y.
,
Xie
,
X.
, and
Katoshevski
,
D.
,
2009
, “
Characterization of Expiration Air Jets and Droplet Size Distributions Immediately at the Mouth Opening
,”
J. Aerosol Sci.
,
40
(
2
), pp.
122
133
.10.1016/j.jaerosci.2008.10.003
49.
Truesdell
,
C.
, and
Toupin
,
R.
,
1960
,
Encyclopedia of Physics
,
III/1
,
Springer-Verlag
,
Berlin
Chap. The Classical Field Theories.
50.
Shim
,
J. J.
,
Maas
,
S. A.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2021
, “
Finite Element Implementation of Biphasic-Fluid Structure Interactions in Febio
,”
ASME J. Biomech. Eng.
,
143
(
9
), p.
091005
.10.1115/1.4050646
You do not currently have access to this content.