The in vitro culture process via bioreactors is critical to create tissue-engineered constructs (TECs) to repair or replace the damaged tissues/organs in various engineered applications. In the past, the TEC culture process was typically treated as a black box and performed on the basis of trial and error. Recently, computational fluid dynamics (CFD) has demonstrated its potential to analyze the fluid flow inside and around the TECs, therefore, being able to provide insight into the culture process, such as information on the velocity field and shear stress distribution that can significantly affect such cellular activities as cell viability and proliferation during the culture process. This paper briefly reviews the CFD and experimental methods used to investigate the in vitro culture process of skeletal-type TECs in bioreactors, where mechanical deformation of the TEC can be ignored. Specifically, this paper presents CFD modeling approaches for the analysis of the velocity and shear stress fields, mass transfer, and cell growth during the culture process and also describes various particle image velocimetry (PIV) based experimental methods to measure the velocity and shear stress in the in vitro culture process. Some key issues and challenges are also identified and discussed along with recommendations for future research.

References

1.
Blitterswijk
,
C. V.
,
2008
,
Tissue Engineering
,
Elsevier Inc.
,
London
.
2.
Meyer
,
U.
,
Meyer
,
T.
,
Handschel
,
J.
, and
Wiesmann
,
H. P.
,
2009
,
Fundamentals of Tissue Engineering and Regenerative Medicine
,
Springer-Verlag
Berlin Heidelberg
.
3.
Milan
,
J.
,
Planell
,
J. S.
, and
Lacroix
,
D.
,
2010
, “
Simulation of Bone Tissue Formation Within a Porous Scaffold Under Dynamic Compression
,”
Biomech. Model. Mechan.
,
9
, pp.
583
596
.10.1007/s10237-010-0199-5
4.
Porter
,
B.
,
Zauel
,
R.
,
Stockman
,
H.
,
Guldberg
,
R.
, and
Fyhrie
,
D.
,
2005
, “
3-D Computational Modeling of Media Flow Through Scaffolds in a Perfusion Bioreactor
,”
J. Biomech.
,
38
, pp.
543
549
.10.1016/j.jbiomech.2004.04.011
5.
Xie
,
Y. Z.
,
Hardouin
,
P.
,
Zhu
,
Z. N.
,
Tang
,
T. T.
,
Dai
,
K. R.
, and
Lu
,
J. X.
,
2006
, “
Three-Dimensional Flow Perfusion Culture System for Stem Cell Proliferation Inside the Critical-Size Betatricalcium Phosphate Scaffold
,”
Tissue Eng.
,
12
, pp.
3535
3543
.10.1089/ten.2006.12.3535
6.
Li
,
D.
,
Tang
,
T.
,
Lu
,
J.
, and
Dai
,
K.
,
2009
, “
Effects of Flow Shear Stress and Mass Transport on the Construction of a Large-Scale Tissue-Engineered Bone in a Perfusion Bioreactor
,”
Tissue Eng. A
,
15
, pp.
2773
2783
.10.1089/ten.tea.2008.0540
7.
Yeatts
,
A. B.
, and
Fisher
,
J. P.
,
2011
, “
Bone Tissue Engineering Bioreactors: Dynamic Culture and Influence of Shear Stress
,”
Bone
,
48
, pp.
171
181
.10.1016/j.bone.2010.09.138
8.
Singh
,
H.
, and
Hutmacher
,
D. W.
,
2009
, “
Bioreactor Studies and Computational Fluid Dynamics
,”
Adv. Biochem. Eng. Biotech.
,
112
, pp.
231
249
.
9.
Fraser
,
K. H.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
The Use of Computational Fluid Dynamics in the Development of Ventricular assists Devices
,”
Med. Eng. Physics
,
33
, pp.
263
280
.10.1016/j.medengphy.2010.10.014
10.
Betchen
,
L. J.
, and
Straatman
,
A.G.
,
2010
, “
An Investigation of the Effects of a Linear Porosity Distribution on Non-Equilibrium Heat Transfer in High-Conductivity Graphite Foam
,”
Num. Heat Transf. A
,
58
, pp.
605
624
.10.1080/10407782.2010.516701
11.
Djilali
,
N.
,
2007
, “
Computational Modeling of Polymer Electrode Membrane (PEM) Fuel Cells: Challenges and Opportunity
,”
Energy
,
32
, pp.
269
280
.10.1016/j.energy.2006.08.007
12.
Sozer
,
E.
, and
Shyy
W.
,
2007
, “
Modeling of Fluid Dynamics and Heat Transfer Through Porous Media for Rocket Propulsion
,”
43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Cincinnati, OH
.
13.
Voronov
,
R.
,
VanGordon
,
S.
,
Sikavitsas
,
V.
, and
Papavassiliou
,
D.
,
2010
, “
Computational Modeling of Flow-Induced Shear Stresses Within 3D Salt-Leached Porous Scaffolds Imaged via Micro-CT
,”
J. Biomech.
,
43
, pp.
1279
1286
.10.1016/j.jbiomech.2010.01.007
14.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
15.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer
,
New York
.
16.
Darcy
,
H.
,
1856
,
Les fontaines publiques de la ville de diljon
,
Dalmont
,
Paris
.
17.
Brinkman
,
H. C.
,
1949
, “
On the Permeability of Media Consisting of Closely Packed Porous Particles
,”
Appl. Sci. Res.
,
A1
, pp.
81
86
.10.1007/BF02120318
18.
Whitaker
,
S.
,
1986
, “
Flow in Porous Media I: A Theoretical Derivation of Darcy's Law
,”
Transport Porous Med.
,
1
(
1
), pp.
3
25
.10.1007/BF01036523
19.
Chung
,
C. A.
,
Chen
,
C. W.
,
Chen
,
C. P.
, and
Tseng
,
C. S.
,
2007
, “
Enhancement of Cell Growth in Tissue-Engineering Constructs Under Perfusion Modeling and Simulation
,”
Biotech. Bioeng.
,
97
(
6
), pp.
1603
1616
.10.1002/bit.21378
20.
Golfier
,
F.
,
Wood
,
B. D.
,
Orgogozo
,
L.
,
Quintard
,
M.
, and
Bues
,
M.
,
2009
, “
Biofilms in Porous Media: Development of Macroscopic Transport Equations via Volume Averaging With Closure for Local Mass Equilibrium Conditions
,”
Adv. Water Resour.
,
32
, pp.
463
485
.10.1016/j.advwatres.2008.11.012
21.
Boccaccio
,
A.
,
Ballini
,
A.
,
Pappalettere
,
C.
,
Tullo
,
D.
,
Cantore
,
S.
, and
Desiate
,
A.
,
2011
, “
Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering
,”
Int. J. Biolog. Sci.
,
7
(
1
), pp.
112
132
.10.7150/ijbs.7.112
22.
Lacroix
,
D.
,
Prendergast
,
P. J.
,
Li
,
G.
, and
Marsh
,
D.
,
2002
, “
Biomechanical Model to Simulate Tissue Differentiation and Bone Regeneration: Application to Fracture Healing
,”
Med. Biol. Eng. Comp.
,
40
, pp.
14
21
.10.1007/BF02347690
23.
Shakeel
,
M.
,
2011
, “
Continuum Modeling of Cell growth and Nutrient Transport in a Perfusion Bioreactor
,”
Ph.D. thesis
,
School of Mathematics and IT Department, University of Nottingham
,
Nottingham, U.K
.
24.
Singh
,
H.
,
Teoh
,
S. H.
,
Low
,
H. T.
, and
Hutmacher
,
D.
W,
2005
, “
Flow Modeling Within a Scaffold Under the Influence of Uni-Axial and Bi-Axial Bioreactor Reaction
,”
J. Biotech.
,
119
, pp.
181
196
.10.1016/j.jbiotec.2005.03.021
25.
Sacco
,
R.
,
Causin
,
P.
,
Zunino
,
P.
, and
Raimondi
,
M. T.
,
2011
, “
A Multiphysics/Multiscale 2D Numerical Simulation of Scaffold-Based Cartilage Regeneration Under Interstitial Perfusion in a Bioreactor
,”
Biomech. Model. Mechan.
,
10
(
4
), pp.
577
589
.10.1007/s10237-010-0257-z
26.
Raimondi
,
M. T.
,
Causin
,
P.
Mara
,
A.
,
Nava
,
M.
,
Laganà
,
M.
, and
Sacco
,
R.
,
2011
, “
Breakthroughs in Computational Modeling of Cartilage Regeneration in Perfused Bioreactors
,”
IEEE T. Biomed. Eng.
,
58
(
12
), pp.
3496
3499
.10.1109/TBME.2011.2163405
27.
Pauwels
,
F.
,
1960
, “
A New Theory on the Influence of Mechanical Stimuli on the Differentiation of Supporting Tissue. The Tenth Contribution to the Functional Anatomy and Causal Morphology of the Supporting Structure
,”
Z. Anat. Entwickl. Gesch.
,
121
, pp.
478
515
.10.1007/BF00523401
28.
Claes
,
L.
, and
Heigele
,
C.
,
1999
, “
Magnitudes of Local Stress and Strain Along Bony Surfaces Predicts the Course and Type of Fracture Healing
,”
J. Biomech.
,
32
, pp.
255
266
.10.1016/S0021-9290(98)00153-5
29.
Isakssona
,
H.
,
Comas
,
O.
,
Donkelaar
,
C.
,
Mediavilla
,
J.
,
Wilsonb
,
W.
,
Huiskesb
,
R.
, and
Itoa
,
K.
,
2006
, “
Bone Regeneration During Distraction Osteogenesis: Mechano-Regulation by Shear Strain and Fluid Velocity
,”
J. Biomech.
,
35
, pp.
2002
2011
.
30.
Prendergast
,
P. J.
, and
Lacroix
,
D.
,
2002
, “
A Mechano-Regulation Model for Tissue Differentiation During Fracture Healing: Analysis of Gap Size and Loading
,”
J. Biomech.
,
35
, pp.
1163
1171
.10.1016/S0021-9290(01)00183-X
31.
Khayyeri
,
H.
,
Checa
,
S.
,
Tagil
,
M.
, and
Prendergast
,
P. J.
,
2009
, “
Corroboration of Mechanobiological Simulations of Tissue Differentiation in an in vivo Bone Chamber Using a Lattice-Modeling Approach
,”
J. Orthoped. Res.
,
27
(
12
), pp.
1659
1666
.10.1002/jor.20926
32.
Tagil
,
M.
, and
Aspenberg
,
P.
,
1999
, “
Cartilage Induction by Controlled Mechanical Stimulation in vivo
,”
J. Orthoped. Res.
,
17
, pp.
200
204
.10.1002/jor.1100170208
33.
Bottaro
,
D. P.
,
Liebmann-Vinson
,
A.
, and
Heidaran
,
M. A.
,
2002
Molecular Signaling in Bioengineered Tissue Microenvironment
,”
Ann. N.Y. Acad. Sci.
,
961
, pp.
143
153
.10.1111/j.1749-6632.2002.tb03068.x
34.
Korossis
,
S. A.
,
Bolland
,
F.
,
Kearney
,
J. N.
,
Fisher
,
J.
, and
Ingham
,
E.
,
2005
, “
Bioreactors in Tissue Engineering
,”
Top. Tissue Eng.
,
5
, pp.
1
24
.
35.
McCoy
,
R. J.
,
Jungreuthmayer
,
C.
, and
O'Brien
,
F. J.
,
2012
, “
Influence of Flow Rate and Scaffold Pore Size on Cell Behavior During Mechanical Simulation in Flow Perfusion Bioreactor
,”
Biotech. Bioeng.
,
109
(
6
), pp.
1583
1594
.10.1002/bit.24424
36.
Hidalgo-Bastida
,
L. A.
,
Thirunavukkarasu
,
S.
,
Griffiths
,
S.
,
Cartmell
,
S. H.
, and
Naire
,
S.
,
2012
, “
Modeling and Design of Optimal Flow Perfusion Bioreactors for Tissue Engineering Applications
,”
Biotech. Bioeng.
,
109
(
4
), pp.
1095
1099
.10.1002/bit.24368
37.
Bilgen
,
B.
, and
Barabino
,
G. A.
,
2007
, “
Location of Scaffolds in Bioreactors Modulates the Hydrodynamic Environment Experienced by Engineered Tissues
,”
Biotech. Bioeng.
,
98
(
1
), pp.
282
294
.10.1002/bit.21385
38.
Gutierrez
,
R. A.
, and
Crumpler
,
E. T.
,
2007
, “
Potential Effect of Geometry on Wall Shears Stress Distribution Across Scaffold Surfaces
,”
Ann. Biomed. Eng.
,
36
(
1
), pp.
77
85
.10.1007/s10439-007-9396-5
39.
Lanza
,
R. P.
,
Langer
,
R.
, and
Vacanti
,
J.
,
2000
,
Principles of Tissue Engineering
,
Academic Press
,
San Diego, CA
.
40.
Vunjak-Novakovic
,
G.
,
Freed
,
L. E.
,
Biron
,
R. J.
, and
Langer
,
R.
,
2004
, “
Effects of Mixing on Tissue Engineered Cartilage
,”
AIChE J.
,
42
(
3
), pp.
850
860
.10.1002/aic.690420323
41.
Singh
,
H.
,
Ang
,
E. S.
,
Lim
,
T. T.
, and
Hutmacher
,
D.W.
,
2006
, “
Flow Modeling in a Novel Non-Perfusion Conical Bioreactor
,”
Biotech. Bioeng.
,
97
(
5
), pp.
1291
1299
.10.1002/bit.21327
42.
Bancroft
,
G. N.
,
Sikavitsas
,
V. I.
, and
Mikos
,
A. G.
,
2003
, “
Design of a Flow Perfusion Bioreactor System for Bone Tissue Engineering Application
,”
Tissue Eng.
,
9
(
3
), pp.
549
554
.10.1089/107632703322066723
43.
Cioffi
,
M.
,
Boschetti
,
F.
,
Raimondi
,
M. T.
, and
Dubini
,
G.
,
2006
, “
Modelling Evaluation of the Fluid-Dynamic Microenvironment in Tissue-Engineered Constructs: A Micro-CT Based Model
,”
Biotech. Bioeng.
,
93
(
3
), pp.
500
510
.10.1002/bit.20740
44.
Raimondi
,
M. T.
,
Boschetti
,
F.
,
Falcone
,
L.
,
Migliavacca
,
F.
,
Remuzzi
,
A.
, and
Dubini
,
G.
,
2004
, “
The Effect of Media Perfusion on Three-Dimensional Cultures of Human Chondrocytes: Integration of Experimental and Computational Approaches
,”
Biorheology
41
, pp.
401
410
.
45.
Bruneau
,
C-H.
, and
Mortazavi
,
I.
,
2008
, “
Numerical Modeling and Passive Flow Control Using Porous Media
,”
Comput. Fluids
,
37
, pp.
488
498
.10.1016/j.compfluid.2007.07.001
46.
Cheng
,
G.
,
Youssef
,
B. B.
,
Markenscoff
,
P.
, and
Zygourakis
,
K.
,
2006
, “
Cell Population Dynamics Modulate the Rates of Tissue Growth Processes
,”
Biophys. J.
,
90
(
3
), pp.
713
724
.10.1529/biophysj.105.063701
47.
Galbusera
,
F.
,
Cioffi
,
M.
,
Raimondi
,
M. T.
, and
Pietrabissa
,
R.
,
2007
, “
Computational Modeling of Combined Cell Population Dynamics and Oxygen Transport in Engineered Tissue Subject to Interstitial Perfusion
Comput. Method. Biomec.
,
10
(
4
), pp.
279
287
.10.1080/10255840701318404
48.
Lemon
,
G.
, and
King
J. R.
,
2007
, “
Multiphase Modeling of Cell Behavior on Artificial Scaffolds: Effects of Nutrient Depletion and Spatially Non-Uniform Porosity
,”
Math. Med. Biol.
,
24
(
1
), pp.
57
83
.10.1093/imammb/dql020
49.
Laganà
,
M.
, and
Raimondi
,
M. T.
,
2012
, “
A Miniaturized, Optically Accessible Bioreactor for Systematic 3D Tissue Engineering Research
,”
Biomed. Microdevices
,
14
(
1
), pp.
225
234
.10.1007/s10544-011-9600-0
50.
Adrian
,
R. J.
, “
Twenty Years of Particle Image Velocimetry
,”
Exp. Fluids
,
39
, pp.
159
169
.10.1007/s00348-005-0991-7
51.
Adrian
,
R. J.
,
1997
, “
Dynamic Ranges of Velocity and Spatial Resolution of Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
, pp.
1393
1398
.10.1088/0957-0233/8/12/003
52.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry—A Practical Guide
,
Springer
,
New York
.
53.
Northrup
,
M. A.
,
Kulp
,
T. J.
, and
Angel
,
S. M.
,
1991
, “
Fluorescent Particle Image Velocimetry: Application to Flow Measurement in Refractive Index-Matched Porous Media
,”
Appl. Optics
,
30
(
1
), pp.
3034
3040
.10.1364/AO.30.003034
54.
Peurrung
,
L. M.
,
Rashidi
,
M.
, and
Kulp
,
T. J.
,
1995
, “
Measurement of Porous Medium Velocity Fields and Their Volumetric Averaging Characteristics Using Particle Tracking Velocimetry
,”
Chem. Eng. Sci.
,
50
(
14
), pp.
2243
2253
.10.1016/0009-2509(94)00509-P
55.
Northrup
,
M. A.
,
Kulp
,
T. J.
, and
Angel
,
S. M.
,
1991
, “
Application of Fluorescent Particle Imaging to Measuring Flow in Complex Media
,”
Anal. Chim. Acta.
,
255
, pp.
275
282
.10.1016/0003-2670(91)80056-Y
56.
Bown
,
M. R.
,
MacInnes
,
J. M.
,
Allen
,
R. W. K.
, and
Zimmerman
,
W. B. J.
,
2006
, “
Three-Dimensional Velocity Measurements Using Stereoscopic Micro-PIV and PTV
,”
Meas. Sci. Technol.
,
17
, pp.
2175
2185
.10.1088/0957-0233/17/8/017
57.
Dusting
,
J.
,
Sheridan
,
J.
, and
Hourigan
,
K.
,
2006
, “
A Fluid Dynamics Approach to Bioreactor Design for Cell and Tissue Culture
,”
Biotech. Bioeng.
,
94
(
6
), pp.
1196
1208
.10.1002/bit.20960
58.
Sucosky
,
P.
,
Osorio
,
D. F.
,
Brown
,
J. B.
, and
Neitzel
,
G. P.
,
2004
, “
Fluid Mechanics of a Spinner-Flask Bioreactor
,”
Biotech. Bioeng.
,
85
(
1
), pp.
34
46
.10.1002/bit.10788
59.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
,
1998
, “
A Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
,
25
(
4
), pp.
316
319
.10.1007/s003480050235
60.
Mielnik
,
M. M.
, and
Saetran
,
L. R.
,
2004
, “
Micro Particle Image Velocimetry—An Overview
,”
Turbulence
,
10
, pp.
83
90
.
61.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Gray
,
M. H. B.
,
2000
, “
Volume Illumination for Two Dimensional Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
11
, pp.
809
814
.10.1088/0957-0233/11/6/326
62.
Lima
,
R.
,
Wada
,
S.
,
Tanaka
,
S.
,
Takeda
,
M.
,
Ishikawa
,
T.
,
Tsubota
,
K.
,
Imai
,
Y.
, and
Yamaguchi
,
T.
,
2008
, “
in vitro Blood Flow in a Rectangular PDMS Microchannel: Experimental Observations Using a Confocal; Micro-PIV System
,”
Biomed. Microdevices
,
10
(
2
), pp.
153
167
.10.1007/s10544-007-9121-z
63.
Provin
,
C.
,
Takano
,
K.
,
Sakai
,
Y.
,
Fujii
,
T.
, and
Shirakashi
,
R.
,
2008
, “
A Method for the Design of 3D Scaffolds for High-Density Cell Attachment and Determination of Optimum Perfusion Culture Conditions
,”
J. Biomech.
,
41
, pp.
1436
1449
.10.1016/j.jbiomech.2008.02.025
64.
De Boodt
,
S.
,
Truscello
,
S.
,
Zcan
,
S.
,
Leroy
,
T.
,
Van Oosterwyck
,
H.
,
Berckmans
,
D.
, and
Schrooten
,
J.
,
2010
, “
Bi-Modular Flow Characterization in Tissue Engineering Scaffolds Using Computational Fluid Dynamics and Particle Imaging Velocimetry
,”
Tissue Eng. C
,
16
(
6
), pp.
1553
1564
.10.1089/ten.tec.2010.0107
65.
Kim
,
G. B.
,
Je
,
J. H.
, and
Lee
,
S. J.
,
2007
, “
Synchrotron X-ray PIV Technique for Measurement of Blood Flow Velocity
,”
Synchrotron Radiation Instrumentation: Ninth International Conference
[American Institute of Physics, 879, pp. 1891–1894 (2007)]
.
66.
Fouras
,
A.
,
Dusting
,
J.
,
Lewis
,
R.
, and
Hourigan
,
K.
,
2007
, “
Three-Dimensional Synchrotron X-ray Particle Image Velocimetry
,”
J. Appl. Phys.
,
102
(
6
), pp.
064916(1–6)
.10.1063/1.2783978
67.
Jia
,
Y.
,
Bagnaninchib
,
P. O.
,
Yang
,
Y.
,
Haj
,
A. E.
,
Hinds
,
M. T.
,
Kirkpatrick
,
S. J.
, and
Wang
,
R. K
,
2009
, “
Doppler Optical Coherence Tomography Imaging of Local Fluid Flow and Shear Stress Within Micro Porous Scaffolds
,”
J. Biomed. Optics
,
14
(
3
), p.
034014
.10.1117/1.3130345
You do not currently have access to this content.