A computational model incorporating physiological motion and uniform transient wall deformation of a branchless right coronary artery (RCA) was developed to assess the influence of artery compliance on wall shear stress (WSS). Arterial geometry and deformation were derived from modern medical imaging techniques, whereas the blood flow was solved numerically employing a moving-grid approach using a well-validated in-house finite element code. The simulation results indicate that artery compliance affects the WSS in the RCA heterogeneously, with the distal region mostly experiencing these effects. Under physiological inflow conditions, coronary compliance contributed to phase changes in the WSS time history, without affecting the temporal gradient of the local WSS nor the bounds of the WSS magnitude. Compliance does not cause considerable changes to the topology of WSS vector patterns nor to the localization of WSS minima along the RCA. We conclude that compliance is not an important factor affecting local hemodynamics in the proximal region of the RCA while the influence of compliance in the distal region needs to be evaluated in conjunction with the outflow to the myocardium through the major branches of the RCA.

1.
Asakura
,
T.
, and
Karino
,
T.
, 1990, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
0009-7330,
66
(
4
), pp.
1045
1066
.
2.
Ojha
,
M.
,
Leask
,
R. L.
,
Butany
,
J.
, and
Johnston
,
K. W.
, 2001, “
Distribution of Intimal and Medial Thickening in the Human Right Coronary Artery: A Study of 17 RCAS
,”
Atherosclerosis
0021-9150,
158
(
1
), pp.
147
153
.
3.
Sabbah
,
H. N.
,
Khaja
,
F.
,
Brymer
,
J. F.
,
Hawkins
,
E. T.
, and
Stein
,
P. D.
, 1984, “
Blood Velocity in the Right Coronary Artery: Relation to the Distribution of Atherosclerotic Lesions
,”
Am. J. Cardiol.
0002-9149,
53
(
8
), pp.
1008
1012
.
4.
Fry
,
D. L.
, 1968, “
Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients
,”
Circ. Res.
0009-7330,
22
(
2
), pp.
165
197
.
5.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Clin. Sci.
0323-5084,
40
(
2
), pp.
5P
.
6.
Friedman
,
M. H.
,
Baker
,
P. B.
,
Ding
,
Z.
, and
Kuban
,
B. D.
, 1996, “
Relationship Between the Geometry and Quantitative Morphology of the Left Anterior Descending Coronary Artery
,”
Atherosclerosis
0021-9150,
125
(
2
), pp.
183
192
.
7.
Friedman
,
M. H.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
, 1987, “
Correlation Between Wall Shear and Intimal Thickness at a Coronary Artery Branch
,”
Atherosclerosis
0021-9150,
68
(
1–2
), pp.
27
33
.
8.
Gibson
,
C. M.
,
Diaz
,
L.
,
Kandarpa
,
K.
,
Sacks
,
F. M.
,
Pasternak
,
R. C.
,
Sandor
,
T.
,
Feldman
,
C.
, and
Stone
,
P. H.
, 1993, “
Relation of Vessel Wall Shear Stress to Atherosclerosis Progression in Human Coronary Arteries
,”
Arterioscler. Thromb.
1049-8834,
13
(
2
), pp.
310
315
.
9.
Krams
,
R.
,
Wentzel
,
J. J.
,
Oomen
,
J. A.
,
Schuurbiers
,
J. C.
,
Andhyiswara
,
I.
,
Kloet
,
J.
,
Post
,
M.
,
de Smet
,
B.
,
Borst
,
C.
,
Slager
,
C. J.
, and
Serruys
,
P. W.
, 1998, “
Shear Stress in Atherosclerosis, and Vascular Remodelling
,”
Semin Interv Cardiol.
1084-2764,
3
(
1
), pp.
39
44
.
10.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Atherosclerosis
0021-9150,
5
(
3
), pp.
293
302
.
11.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1993, “
The Role of Fluid-Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
4
), pp.
588
594
.
12.
Krams
,
R.
,
Wentzel
,
J. J.
,
Oomen
,
J. A.
,
Vinke
,
R.
,
Schuurbiers
,
J. C.
,
de Feyter
,
P. J.
,
Serruys
,
P. W.
, and
Slager
,
C. J.
, 1997, “
Evaluation of Endothelial Shear Stress and 3D Geometry as Factors Determining the Development of Atherosclerosis and Remodeling in Human Coronary Arteries In Vivo. Combining 3D Reconstruction From Angiography and IVUS (ANGUS) With Computational Fluid Dynamics
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
17
(
10
), pp.
2061
2065
.
13.
Feldman
,
C. L.
, and
Stone
,
P. H.
, 2000, “
Intravascular Hemodynamic Factors Responsible for Progression of Coronary Atherosclerosis and Development of Vulnerable Plaque
,”
Curr. Opin. Cardiol.
0268-4705,
15
(
6
), pp.
430
440
.
14.
Nerem
,
R. M.
, 1992, “
Vascular Fluid-Mechanics, the Arterial-Wall, and Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
3
), pp.
274
282
.
15.
Friedman
,
M. H.
, and
Fry
,
D. L.
, 1993, “
Arterial Permeability Dynamics and Vascular Disease
,”
Atherosclerosis
0021-9150,
104
(
1–2
), pp.
189
194
.
16.
Myers
,
J. G.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 2001, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
(
2
), pp.
109
120
.
17.
Puentes
,
J.
,
Roux
,
C.
,
Garreau
,
M.
, and
Coatrieux
,
J. L.
, 1998, “
Dynamic Feature Extraction of Coronary Artery Motion Using DSA Image Sequences
,”
IEEE Trans. Med. Imaging
0278-0062,
17
(
6
), pp.
857
871
.
18.
Ding
,
Z.
, and
Friedman
,
M. H.
, 2000, “
Quantification of 3-D Coronary Arterial Motion Using Clinical Biplane Cineangiograms
,”
Sensors
0746-9462,
16
(
5
), pp.
331
346
.
19.
Ding
,
Z.
, and
Friedman
,
M. H.
, 2000, “
Dynamics of Human Coronary Arterial Motion and Its Potential Role in Coronary Atherogenesis
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
5
), pp.
488
492
.
20.
Ding
,
Z.
,
Zhu
,
H.
, and
Friedman
,
M. H.
, 2002, “
Coronary Artery Dynamics In Vivo
,”
Ann. Biomed. Eng.
0090-6964,
30
(
4
), pp.
419
429
.
21.
Dorsaz
,
P. A.
,
Dorsaz
,
L.
, and
Doriot
,
P. A.
, 2000, “
Velocity and Acceleration of Coronary Arteries During the Cardiac Cycle
,”
Eur. Heart J.
0195-668X,
21
, p.
250
.
22.
Gross
,
M. F.
, and
Friedman
,
M. H.
, 1998, “
Dynamics of Coronary Artery Curvature Obtained From Biplane Cineangiograms
,”
J. Biomech.
0021-9290,
31
(
5
), pp.
479
484
.
23.
Puentes
,
J.
,
Garreau
,
M.
,
Lebreton
,
H.
, and
Roux
,
C.
, 1998, “
Understanding Coronary Artery Movement: A Knowledge-Based Approach
,”
Artif. Intell. Med.
0933-3657,
13
(
3
), pp.
207
237
.
24.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
, 2003, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
0090-6964,
31
(
4
), pp.
420
429
.
25.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedman
,
M. H.
, 2004, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
0021-9290,
37
(
11
), pp.
1767
1775
.
26.
Wolters
,
B. J. B. M.
,
Slager
,
C. J.
,
Gijsen
,
F. J. H.
,
Wentzel
,
J. J.
,
Krams
,
R.
, and
van de Vosse
,
F. N.
, 2001, “
On the Numerical Analysis of Coronary Artery Wall Shear Stress
,”
Comput. Cardiol.
0276-6574,
28
, pp.
169
172
.
27.
Berthier
,
B.
,
Bouzerar
,
R.
, and
Legallais
,
C.
, 2002, “
Blood Flow Patterns in an Anatomically Realistic Coronary Vessel: Influence of Three Different Reconstruction Methods
,”
J. Biomech.
0021-9290,
35
(
10
), pp.
1347
1356
.
28.
Kassab
,
G. S.
,
Rider
,
C. A.
,
Tang
,
N. J.
, and
Fung
,
Y. C. B.
, 1993, “
Morphometry of Pig Coronary Arterial Trees
,”
Am. J. Physiol.
0002-9513,
265
(
1
), pp.
H350
H365
.
29.
Pivkin
,
I. V.
,
Richardson
,
P. D.
,
Laidlaw
,
D. H.
, and
Karniadakis
,
G. E.
, 2005, “
Combined Effects of Pulsatile Flow and Dynamic Curvature on Wall Shear Stress in a Coronary Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
38
(
6
), pp.
1283
1290
.
30.
Qiu
,
Y.
, and
Tarbell
,
J. M.
, 2000, “
Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
77
85
.
31.
Ramaswamy
,
S. D.
,
Vigmostad
,
S. C.
,
Wahle
,
A.
,
Lai
,
Y. G.
,
Olszewski
,
M. E.
,
Braddy
,
K. C.
,
Brennan
,
T. M. H.
,
Rossen
,
J. D.
,
Sonka
,
M.
, and
Chandran
,
K. B.
, 2004, “
Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery With Arterial Motion
,”
Ann. Biomed. Eng.
0090-6964,
32
(
12
), pp.
1628
1641
.
32.
Boutsianis
,
E.
,
Dave
,
H.
,
Frauenfelder
,
T.
,
Poulikakos
,
D.
,
Wildermuth
,
S.
,
Turina
,
M.
,
Ventikos
,
Y.
, and
Zund
,
G.
, 2004, “
Computational Simulation of Intracoronary Flow Based on Real Coronary Geometry
,”
Eur. J. Cardiothorac Surg.
1010-7940,
26
(
2
), pp.
248
256
.
33.
Zeng
,
D. H.
, and
Ethier
,
C. R.
, 2003, “
A Mesh-Updating Scheme for Hemodynamic Simulations in Vessels Undergoing Large Deformations
,”
J. Eng. Math.
0022-0833,
47
(
3–4
), pp.
405
418
.
34.
Leschka
,
S.
,
Alkadhi
,
H.
,
Plass
,
A.
,
Desbiolles
,
L.
,
Grunenfelder
,
J.
,
Marincek
,
B.
, and
Wildermuth
,
S.
, 2005, “
Accuracy of MSCT Coronary Angiography With 64-Slice Technology: First Experience
,”
Eur. Heart J.
0195-668X,
26
(
15
), pp.
1482
1487
.
35.
Atabek
,
H. B.
,
Ling
,
S. C.
, and
Patel
,
D. J.
, 1975, “
Analysis of Coronary Flow Fields in Thoracotomized Dogs
,”
Circ. Res.
0009-7330,
37
(
6
), pp.
752
761
.
36.
Shaw
,
J. A.
,
Kingwell
,
B. A.
,
Walton
,
A. S.
,
Cameron
,
J. D.
,
Pillay
,
P.
,
Gatzka
,
C. D.
, and
Dart
,
A. M.
, 2002, “
Determinants of Coronary Artery Compliance in Subjects With and Without Angiographic Coronary Artery Disease
,”
J. Am. Coll. Cardiol.
0735-1097,
39
(
10
), pp.
1637
1643
.
37.
Weissman
,
N. J.
,
Palacios
,
I. F.
, and
Weyman
,
A. E.
, 1995, “
Dynamic Expansion of the Coronary Arteries: Implications for Intravascular Ultrasound Measurements
,”
Am. Heart J.
0002-8703,
130
(
1
), pp.
46
51
.
38.
Nakatani
,
S.
,
Yamagishi
,
M.
,
Tamai
,
J.
,
Goto
,
Y.
,
Umeno
,
T.
,
Kawaguchi
,
A.
,
Yutani
,
C.
, and
Miyatake
,
K.
, 1995, “
Assessment of Coronary Artery Distensibility by Intravascular Ultrasound. Application of Simultaneous Measurements of Luminal Area and Pressure
,”
Circulation
0009-7322,
91
(
12
), pp.
2904
2910
.
39.
Kerber
,
S.
,
Heinemann-Vechtel
,
O.
,
Gunther
,
F.
,
Rahmel
,
A.
,
Weyand
,
M.
,
Deng
,
M.
,
Scheld
,
H. H.
, and
Breithardt
,
G.
, 1996, “
Coronary Compliance in Patients Following Orthotopic Heart Transplantation. An Intravascular Ultrasound Study
,”
Eur. Heart J.
0195-668X,
17
(
12
), pp.
1891
1897
.
40.
Huerta
,
A.
, and
Liu
,
W. K.
, 1988, “
Viscous-Flow With Large Free-Surface Motion
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
69
(
3
), pp.
277
324
.
41.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
, 1981, “
Lagrangian-Eulerian Finite-Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
29
(
3
), pp.
329
349
.
42.
Matsuo
,
S.
,
Tsuruta
,
M.
,
Hayano
,
M.
,
Imamura
,
Y.
,
Eguchi
,
Y.
,
Tokushima
,
T.
, and
Tsuji
,
S.
, 1988, “
Phasic Coronary Artery Flow Velocity Determined by Doppler Flowmeter Catheter in Aortic Stenosis and Aortic Regurgitation
,”
Am. J. Cardiol.
0002-9149,
62
(
13
), pp.
917
922
.
43.
Zeng
,
D.
, 2003, “
Finite Element Simulation of Blood Flow in a Realistic Model of a Moving Human Right Coronary Artery
,”
Mechanical and Industrial Engineering
,
University of Toronto
,
Toronto
, p.
222
.
You do not currently have access to this content.