Abstract

The esophagus, like other soft tissues, exhibits nonlinear and anisotropic mechanical properties. As a composite structure, the properties of the outer muscle and inner mucosal layer are different. It is expected that the complex mechanical properties will induce nonhomogeneous stress distributions in the wall and nonuniform tissue remodeling. Both are important factors which influence the function of mechanosensitive receptor located in various layers of the wall. Hence, the characterization of the mechanical properties is essential to understand the neuromuscular motion of the esophagus. In this study, the uniaxial tensile tests were conducted along two mutually orthogonal directions of porcine esophageal tissue to identify the directional (circumferential and axial), regional (abdominal, thoracic, and cervical), and layer (muscle and mucosa) variations of the mechanical properties. A structure-based constitutive model, which took the architectures of the tissue’s microstructures into account, was applied to describe the mechanical behavior of the esophagus. Results showed that the constitutive model successfully described the mechanical behavior and provided robust estimates of the material parameters. In conclusion, the model was demonstrated to be a good descriptor of the mechanical properties of the esophagus and it was able to facilitate the directional, layer, and regional comparisons of the mechanical properties in terms of the associated material parameters.

1.
Gregersen
,
H.
, 2003,
Biomechanics of the Gastrointestinal Tract: New Perspectives in Motility Research and Diagnostics
,
Springer-Verlag
,
London
.
2.
Vanags
,
I.
,
Petersons
,
A.
,
Ose
,
V.
,
Ozolanta
,
I.
,
Kasyanov
,
V.
,
Laizans
,
J.
,
Vjaters
,
E.
,
Gardovskis
,
J.
, and
Vanags
,
A.
, 2003, “
Biomechanical Properties of Esophagus Wall under Loading
,”
J. Biomech.
0021-9290,
36
, pp.
1237
1408
.
3.
Liao
,
D.
,
Fan
,
Y.
,
Zeng
,
Y.
, and
Gregersen
,
H.
, 2003, “
Stress Distribution in the Layered Wall of the Rat Oesophagus
,”
Med. Eng. Phys.
1350-4533,
25
, pp.
731
738
.
4.
Lu
,
X.
, and
Gregersen
,
H.
, 2001, “
Regional Distribution of Axial Strain and Circumferential Residual Strain in the Layered Rabbit Oesophagus
,”
J. Biomech.
0021-9290,
34
, pp.
225
233
.
5.
Vito
,
R. P.
, and
Dixon
,
S. A.
, 2003, “
Blood Vessel Constitutive Models—1995–2002
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
413
439
.
6.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
7.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
, 1979, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol.
0002-9513,
237
, pp.
620
631
.
8.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2004, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Mode and Issues of Material Stability
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
264
275
.
9.
Zhang
,
X.
,
Tack
,
J.
,
Janssens
,
J.
, and
Sifrim
,
D. A.
, 2004, “
Neural Regulation of Tone in the Oesophageal Body: In Vivo Barostat Assessment of Volume-Pressure Relationships in the Feline Oesophagus
,”
Neurogastroenterol Motil
1350-1925,
16
, pp.
13
21
.
10.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
New York
.
11.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2004, “
A Strain Energy Function for Arteries Accounting For Wall Composition and Structure
,”
J. Biomech.
0021-9290,
37
, pp.
989
1000
.
12.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
280
287
.
13.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1992, “
A Constitutive Theory for Biomembranes: Application to Epicardial Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
461
466
.
14.
Yin
,
F. C. P.
,
Chew
,
P. H.
, and
Zeger
,
S. L.
, 1986, “
An Approach to Quantification of Biaxial Tissue Stress-Strain Data
,”
J. Biomech.
0021-9290,
19
, pp.
27
37
.
15.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
16.
Lin
,
D. H. S.
, and
Yin
,
F. C. P.
, 1998, “
A Multiaxial Constitutive Law for Mammalian Left Ventricular Myocardium in Steady-State Barium Contracture or Tetanus
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
504
517
.
17.
Beck
,
J. V.
, and
Arnold
,
K. F.
, 1977,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
18.
Sarver
,
J. J.
,
Robinson
,
P. S.
, and
Elliott
,
D. M.
, 2003, “
Methods for Quasi-Linear Viscoelastic Modeling of Soft Tissue: Application to Incremental Stress-Relaxation Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
754
758
.
19.
Gregersen
,
H.
,
Lee
,
T. C.
,
Chien
,
S.
,
Skalak
,
R.
, and
Fung
,
Y. C.
, 1999, “
Strain Distribution in the Layered Wall of the Esophagus
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
442
447
.
20.
Yamada
,
H. M. D.
, 1970,
Strength of Biological Materials
,
Wavely
,
Maryland
.
21.
Fan
,
Y.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2004, “
A Two-layered Mechanical Model of the Rat Esophagus. Experiment and Theory
,”
Biomed. Eng. Online
1475-925X,
3
(
1
),
40
.
22.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
.
23.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
, 2001,
Biomechanics of Soft Tissue in Cardiovascular Systems
,
Springer-Verlag
,
Wien
.
24.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part Π—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
327
335
.
25.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2001, “
A Viscoelastic Model for Fiber-Reinforce Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4379
4403
.
26.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
441
463
.
27.
Quaglini
,
V.
,
Vena
,
P.
, and
Contro
,
R.
, 2004, “
A Discrete-Time Approach to the Formulation of Constitutive Models for Viscoelastic Soft Tissues
,”
Biomechanics and Modeling in Mechanobiology
,
3
, pp.
85
97
.
28.
Sverdlik
,
A.
, and
Lanir
,
Y.
, 2002, “
Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
78
84
.
29.
Donahue
,
T. L. H.
,
Gregersen
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2001, “
Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made From Bovine Digital Extensor and Human Hamstring Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
162
169
.
You do not currently have access to this content.