Nondriving intersegmental knee moment components (i.e., varus/valgus and internal/external axial moments) are thought to be primarily responsible for the etiology of overuse knee injuries such as patellofermoral pain syndrome in cycling because of their relationship to muscular imbalances. However the relationship between these moments and muscle activity has not been studied. Thus the four primary objectives of this study were to test whether manipulating the inversion/eversion foot angle alters the varus/valgus knee moment (Objective 1) and axial knee moment (Objective 2) and to determine whether activation patterns of the vastus medialis oblique (VMO), vastus lateralis (VL), and tensor fascia latae (TFL) were affected by changes in the varus/valgus (Objective 3) and axial knee moments (Objective 4). To fulfill these objectives, pedal loads and lower limb kinematic data were collected from 15 subjects who pedaled with five randomly assigned inversion/eversion angles: 10 deg and 5 deg everted and inverted and 0deg (neutral). A previously described mathematical model was used to compute the nondriving intersegmental knee moments throughout the crank cycle. The excitations of the VMO, VL, and TFL muscles were measured with surface electromyography and the muscle activations were computed. On average, the 10-deg everted position decreased the peak varus moment by 55% and decreased the peak internal axial moment by 53% during the power stroke (crank cycle region where the knee moment is extensor). A correlation analysis revealed that the VMO/VL activation ratio increased significantly and the TFL activation decreased significantly as the varus moment decreased. For both the VMO/VL activation ratio and the TFL activation, a path analysis indicated that the varus/valgus moment was highly correlated to the axial moment but that the correlation between muscle activation and the varus moment was due primarily to the varus/valgus knee moment rather than the axial knee moment. The conclusion from these results is that everting the foot may be beneficial towards either preventing or ameliorating patellofemoral pain syndrome in cycling.

1.
Holmes
,
J. C.
,
Pruitt
,
A. L.
, and
Whalen
,
N. J.
, 1991, “
Cycling Knee Injuries
,”
Cycling Science
,
3
, pp.
11
14
.
2.
Weiss
,
B. D.
, 1985, “
Nontraumatic Injuries in Amateur Long Distance Bicyclists
,”
Am. J. Sports Med.
0363-5465,
13
, pp.
187
192
.
3.
Wilber
,
C. A.
,
Holland
,
G. J.
,
Madison
,
R. E.
, and
Loy
,
S. F.
, 1995, “
An Epidemiological Analysis of Overuse Injuries among Recreational Cyclists
,”
Int. J. Sports Med.
0172-4622,
16
, pp.
201
206
.
4.
Goodfellow
,
J.
,
Hungerford
,
D. S.
, and
Woods
,
C.
, 1976, “
Patello-Femoral Joint Mechanics and Pathology. 2. Chondromalacia Patellae
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
58
, pp.
291
299
.
5.
Insall
,
J.
, 1982, “
Current Concepts Review: Patellar Pain
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
64
, pp.
147
152
.
6.
Lieb
,
F. J.
, and
Perry
,
J.
, 1968, “
Quadriceps Function. An Anatomical and Mechanical Study Using Amputated Limbs
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
50
, pp.
1535
1548
.
7.
Basmajian
,
J. V.
, and
De Luca
,
C. J.
, 1985,
Muscles Alive: Their Functions Revealed by Electromyography
,
Williams & Wilkins
, Baltimore, MD.
8.
Ericson
,
M. O.
, and
Nisell
,
R.
, 1987, “
Patellofemoral Joint Forces During Ergometric Cycling
,”
Phys. Ther.
0031-9023,
67
, pp.
1365
1369
.
9.
Pruitt
,
A. L.
, 1988, “
The Cyclist’s Knee: Anatomical and Biomechanical Considerations
,”
Medical and Scientific Aspects of Cycling
,
E. R.
Burke
and
M. M.
Newsoms
, eds.,
Human Kinetics
, Champaign, IL, pp.
16
24
.
10.
Huberti
,
H. H.
, and
Hayes
,
W. C.
, 1984, “
Patellofemoral Contact Pressures. The Influence of Q-Angle and Tendofemoral Contact
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
66
, pp.
715
724
.
11.
Sanner
,
W. H.
, and
O’Halloran
,
W. D.
, 2000, “
The Biomechanics, Etiology, and Treatment of Cycling Injuries
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
90
, pp.
354
376
.
12.
Wolchok
,
J. C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 1998, “
The Effect of Intersegmental Knee Moments on Patellofemoral Contact Mechanics in Cycling
,”
J. Biomech.
0021-9290,
31
, pp.
677
683
.
13.
Boyd
,
T. F.
,
Neptune
,
R. R.
, and
Hull
,
M. L.
, 1997, “
Pedal and Knee Loads Using a Multi-Degree-of-Freedom Pedal Platform in Cycling
,”
J. Biomech.
0021-9290,
30
, pp.
505
511
.
14.
Ruby
,
P.
,
Hull
,
M. L.
, and
Hawkins
,
D.
, 1992, “
Three-Dimensional Knee Joint Loading During Seated Cycling
,”
J. Biomech.
0021-9290,
25
, pp.
41
53
.
15.
Ruby
,
P.
,
Hull
,
M. L.
,
Kirby
,
K. A.
, and
Jenkins
,
D. W.
, 1992, “
The Effect of Lower-Limb Anatomy on Knee Loads During Seated Cycling
,”
J. Biomech.
0021-9290,
25
, pp.
1195
1207
.
16.
Gregersen
,
C. S.
, and
Hull
,
M. L.
, 2003, “
Non-Driving Intersegmental Knee Moments in Cycling Computed Using a Model That Includes Three-Dimensional Kinematics of the Shank/Foot and the Effect of Simplifying Assumptions
,”
J. Biomech.
0021-9290,
36
, pp.
803
813
.
17.
Buchanan
,
T. S.
,
Kim
,
A. W.
, and
Lloyd
,
D. G.
, 1996, “
Selective Muscle Activation Following Rapid Varus/Valgus Perturbations at the Knee
,”
Med. Sci. Sports Exercise
0195-9131,
28
, pp.
870
876
.
18.
Buchanan
,
T. S.
, and
Lloyd
,
D. G.
, 1997, “
Muscle Activation at the Human Knee During Isometric Flexion-Extension and Varus-Valgus Loads
,”
J. Orthop. Res.
0736-0266,
15
, pp.
11
17
.
19.
Fulkerson
,
J. P.
,
Hungerford
,
D. S.
, and
Ficat
,
P.
, 1990,
Disorders of the Patello-Femoral Joint
,
Williams & Wilkins
, Baltimore, MD.
20.
Puniello
,
M. S.
, 1993, “
Iliotibial Band Tightness and Medial Patellar Glide in Patients with Patellofemoral Dysfunction
,”
J. Orthop. Sports Phys. Ther.
0190-6011,
17
, pp.
144
148
.
21.
Kwak
,
S. D.
,
Ahmad
,
C. S.
,
Gardner
,
T. R.
,
Grelsamer
,
R. P.
,
Henry
,
J. H.
,
Blankevoort
,
L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2000, “
Hamstrings and Iliotibial Band Forces Affect Knee Kinematics and Contact Pattern
,”
J. Orthop. Res.
0736-0266,
18
, pp.
101
108
.
22.
Mills
,
O. S.
, and
Hull
,
M. L.
, 1991, “
Rotational Flexibility of the Human Knee Due to Varus/Valgus and Axial Moments in Vivo
,”
J. Biomech.
0021-9290,
24
, pp.
673
690
.
23.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
deLange
,
A.
, 1988, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
0021-9290,
21
, pp.
705
720
.
24.
Andrews
,
J. G.
, 1995, “
Euler’s and Lagrange’s Equations for Linked Rigid-Body Models of Three-Dimensional Human Motion
,” in
Three-Dimensional Analysis of Human Movement
,
P.
Allard
,
I.
Stokes
, and
J.
Blanchis
, eds.,
Human Kinetics
, Champaign, IL, pp.
145
175
.
25.
de Leva
,
P.
, 1996, “
Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
0021-9290,
29
, pp.
1223
1230
.
26.
Ruby
,
P.
, and
Hull
,
M. L.
, 1993, “
Response of Intersegmental Knee Loads to Foot/Pedal Platform Degrees of Freedom in Cycling
,”
J. Biomech.
0021-9290,
26
, pp.
1327
1340
.
27.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
, 1993, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
290
, pp. 259–268.
28.
Delagi
,
E. F.
,
Perotto
,
A.
,
Iazzetti
,
J.
, and
Morrison
,
D.
, 1975,
Anatomic Guide for the Electromyographer
,
Charles C. Thomas
, Springfield, IL.
29.
Winter
,
D. A.
, 1990,
Biomechanics and Motor Control of Human Movement
,
Wiley
, New York.
30.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
, pp.
359
411
.
31.
Raasch
,
C. C.
,
Zajac
,
F. E.
,
Ma
,
B.
, and
Levine
,
W. S.
, 1997, “
Muscle Coordination of Maximum-Speed Pedaling
,”
J. Biomech.
0021-9290,
30
, pp.
595
602
.
32.
Winters
,
J. M.
, and
Stark
,
L.
, 1988, “
Estimated Mechanical Properties of Synergistic Muscles Involved in Movements of a Variety of Human Joints
,”
J. Biomech.
0021-9290,
21
, pp.
1027
1041
.
33.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Hull
,
M. L.
, 1997, “
The Effect of Pedaling Rate on Coordination in Cycling
,”
J. Biomech.
0021-9290,
30
, pp.
1051
1058
.
34.
Huynh
,
H.
, and
Feldt
,
L. S.
, 1976, “
Estimation of the Box Correction for Degrees of Freedom from Sample Data in Randomized Block and Split-Plot Designs
,”
J. Educ. Stat.
0362-9791,
1
, pp.
69
82
.
35.
Li
,
C. C.
, 1975,
Path Analysis: A Primer
,
Boxwood Press
, Pacific Grove, CA.
36.
Kerrigan
,
D. C.
,
Lelas
,
J. L.
,
Goggins
,
J.
,
Merriman
,
G. J.
,
Kaplan
,
R. J.
, and
Felson
,
D. T.
, 2002, “
Effectiveness of a Lateral-Wedge Insole on Knee Varus Torque in Patients with Knee Osteoarthritis
,”
Arch. Phys. Med. Rehabil.
0003-9993,
83
, pp.
889
893
.
37.
Fisher
,
D.
,
Andriacchi
,
T.
,
Alexander
,
E.
,
Dyrby
,
C.
, and
Morag
,
E.
, 2005, “
Initial Gait Characteristics Influence the Effect of Footwear Intervention to Modify Knee Loading
,” Transactions of the Orthopedic Research Society.
38.
Sanderson
,
D. J.
,
Black
,
A. H.
, and
Montgomery
,
J.
, 1994, “
The Effect of Varus and Valgus Wedges on Coronal Plane Knee Motion During Steady-Rate Cycling
,”
Clin. J. Sport Med.
1050-642X,
4
, pp.
120
124
.
39.
Hull
,
M. L.
, and
Ruby
,
P.
, 1996, “
Preventing Overuse Knee Injuries
,” in
High-Tech Cycling
,
E. R.
Burkes
, ed.,
Human Kinetics
, Champaign, IL, pp.
251
279
.
40.
Hodges
,
P. W.
, and
Richardson
,
C. A.
, 1993, “
The Influence of Isometric Hip Adduction on Quadriceps Femoris Activity
,”
Scand. J. Rehabil. Med.
0036-5505,
25
, pp.
57
62
.
41.
Hanten
,
W. P.
, and
Schulthies
,
S. S.
, 1990, “
Exercise Effect on Electromyographic Activity of the Vastus Medialis Oblique and Vastus Lateralis Muscles
,”
Phys. Ther.
0031-9023,
70
, pp.
561
565
.
42.
Cavanagh
,
P. R.
,
Morag
,
E.
,
Boulton
,
A. J.
,
Young
,
M. J.
,
Deffner
,
K. T.
, and
Pammer
,
S. E.
, 1997, “
The Relationship of Static Foot Structure to Dynamic Foot Function
,”
J. Biomech.
0021-9290,
30
, pp.
243
250
.
43.
McPoil
,
T. G.
, and
Cornwall
,
M. W.
, 1996, “
The Relationship between Static Lower Extremity Measurements and Rearfoot Motion During Walking
,”
J. Orthop. Sports Phys. Ther.
0190-6011,
24
, pp.
309
314
.
44.
Nigg
,
B. M.
,
Cole
,
G. K.
, and
Nachbauer
,
W.
, 1993, “
Effects of Arch Height of the Foot on Angular Motion of the Lower Extremities in Running
,”
J. Biomech.
0021-9290,
26
, pp.
909
916
.
45.
Cappozzo
,
A.
, 1991, “
Three-Dimensional Analysis of Human Walking: Experimental Methods and Associated Artifacts
,”
Hum. Mov. Sci.
0167-9457,
10
, pp.
589
602
.
46.
Hof
,
A. L.
, 1984, “
Electromyography and Muscle Force: An Introduction
,”
Hum. Mov. Sci.
0167-9457,
3
, pp.
119
153
.
47.
Perry
,
J.
, and
Bekey
,
G. A.
, 1981, “
EMG-Force Relationships in Skeletal Muscle
,”
Crit. Rev. Biomed. Eng.
0278-940X,
7
, pp.
1
22
.
You do not currently have access to this content.