Background: Computational fluid dynamics tools are useful for their ability to model patient specific data relevant to the genesis and progression of atherosclerosis, but unavailable to measurement tools. The sensitivity of the physiologically relevant parameters of wall shear stress (WSS) and the oscillatory shear index (OSI) to secondary flow in the inlet velocity profiles was investigated in three realistic models of the carotid bifurcation. Method of Approach: Secondary flow profiles were generated using sufficiently long entrance lengths, to which curvature and helical pitch were added. The differences observed were contextualized with respect to effect of the uncertainty of the models’ geometry on the same parameters. Results: The effects of secondary velocities in the inlet profile on WSS and OSI break down within a few diameters of the inlet. Overall, the effect of secondary inlet flow on these models was on average more than 3.5 times smaller than the effect of geometric variability, with 13% and 48% WSS variability induced by inlet secondary flow and geometric differences, respectively. Conclusions: The degree of variation is demonstrated to be within the range of the other computational assumptions, and we conclude that given a sufficient entrance length of realistic geometry, simplification to fully developed axial (i.e., Womersley) flow may be made without penalty. Thus, given a choice between measuring three components of inlet velocity or a greater geometric extent, we recommend effort be given to more accurate and detailed geometric reconstructions, as being of primary influence on physiologically significant indicators.

1.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
J. Am. Med. Assoc.
0098-7484,
282
(
21
), pp.
2035
2042
.
2.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
30
(
4
), pp.
483
497
.
3.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
(
3
), pp.
293
302
.
4.
Kleinstreuer
,
C.
,
Hyun
,
S.
,
Buchanan
,
J. R.
, Jr.
,
Longest
,
P. W.
,
Archie
,
J. P.
, Jr.
, and
Truskey
,
G. A.
, 2001, “
Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels
,”
Crit. Rev. Biomed. Eng.
0278-940X,
29
(
1
), pp.
1
64
.
5.
Antiga
,
L.
,
Ene-Iordache
,
B.
,
Caverni
,
L.
,
Cornalba
,
G. P.
, and
Remuzzi
,
A.
, 2002, “
Geometric Reconstruction for Computational Mesh Generation of Arterial Bifurcations From CT Angiography
,”
Comput. Med. Imaging Graph.
0895-6111,
26
(
4
), pp.
227
235
.
6.
Barratt
,
D. C.
,
Ariff
,
B. B.
,
Humphries
,
K. N.
,
Thom
,
S. A. McG.
, and
Hughes
,
A. D.
, 2004, “
Reconstruction and Quantification of the Carotid Artery Bifurcation From 3-D Ultrasound Images
,”
IEEE Trans. Med. Imaging
0278-0062,
23
(
5
), pp.
567
583
.
7.
Glor
,
F. P.
,
Long
,
Q.
,
Hughes
,
A. D.
,
Augst
,
A. D.
,
Ariff
,
B.
,
Thom
,
S. A. McG.
,
Verdonck
,
P. R.
, and
Xu
,
X. Y.
, 2003, “
Reproducibility Study of Magnetic Resonance Image-Based Computational Fluid Dynamics Prediction of Carotid Bifurcation Flow
,”
Ann. Biomed. Eng.
0090-6964,
31
(
2
), pp.
142
151
.
8.
Thomas
,
J. B.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2003, “
Reproducibility of Image-Based Computational Fluid Dynamics Models of the Human Carotid Bifurcation
,”
Ann. Biomed. Eng.
0090-6964,
31
(
2
), pp.
132
141
.
9.
Dean
,
W. R.
, 1927, “
Note on the Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
0031-8086,
4
(
20
), pp.
208
223
.
10.
Shipkowitz
,
T.
,
Rodgers
,
V. G. J.
,
Frazin
,
L. J.
, and
Chandran
,
K. B.
, 2000, “
Numerical Study on the Effect of Secondary Flow in the Human Aorta on Local Shear Stresses in Abdominal Aortic Branches
,”
J. Biomech.
0021-9290,
33
(
6
), pp.
717
728
.
11.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, 2001, “
Effects of Curved Inlet Tubes on Air Flow and Particle Deposition in Bifurcating Lung Models
,”
J. Biomech.
0021-9290,
34
(
5
), pp.
659
669
.
12.
Caro
,
C. G.
,
Dumoulin
,
C. L.
,
Graham
,
J. M.
,
Parker
,
K. H.
, and
Souza
,
S. P.
, 1992, “
Secondary Flow in the Human Common Carotid Artery Imaged by MR Angiography
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
1
), pp.
147
149
.
13.
Tortoli
,
P.
,
Michelassi
,
V.
,
Bambi
,
G.
,
Guidi
,
F.
, and
Righi
,
D.
, 2003, “
Interaction Between Secondary Velocities, Flow Pulsation and Vessel Morphology in the Common Carotid Artery
,”
Ultrasound Med. Biol.
0301-5629,
29
(
3
), pp.
407
415
.
14.
Steinman
,
D. A.
,
Thomas
,
J. B.
,
Ladak
,
H. M.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Spence
,
J. D.
, 2002, “
Reconstruction of Carotid Bifurcation Hemodynamics and Wall Thickness Using Computational Fluid Dynamics and MRI
,”
Magn. Reson. Med.
0740-3194,
47
(
1
), pp.
149
159
.
15.
Minev
,
P. D.
, and
Ethier
,
C. R.
, 1999, “
A Characteristic∕Finite Element Algorithm for the 3-D Navier-Stokes Equations Using Unstructured Grids
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
178
(
1–2
), pp.
39
50
.
16.
Ethier
,
C. R.
,
Prakash
,
S.
,
Steinman
,
D. A.
,
Leask
,
R.
,
Couch
,
G.
, and
Ojha
,
M.
, 2000, “
Steady Flow Separation Patterns in a 45Degree Junction
,”
J. Fluid Mech.
0022-1120,
411
, pp.
1
38
.
17.
Ethier
,
C. R.
,
Steinman
,
D. A.
, and
Ojha
,
M.
, 1999, “
Comparisons Between Computational Hemodynamics, Photochromic Dye Flow Visualization and Magnetic Resonance Velocimetry
,”
The Haemodynamics of Arterial Organs—Comparison of Computational Predictions With In Vivo and In Vitro Data
,
X. Y.
Xu
, and
M. W.
Collins
, eds.,
WIT Press
,
Southampton
, pp.
131
183
.
18.
Zabielski
,
L.
, and
Mestel
,
A. J.
, 1998, “
Steady Flow in a Helically Symmetric Pipe
,”
J. Fluid Mech.
0022-1120,
370
, pp.
297
320
.
19.
Zabielski
,
L.
, and
Mestel
,
A. J.
, 1998, “
Unsteady Blood Flow in a Helically Symmetric Pipe
,”
J. Fluid Mech.
0022-1120,
370
, pp.
321
345
.
20.
Pedley
,
T. J.
, 2003, “
Mathematical Modelling of Arterial Fluid Dynamics
,”
J. Eng. Math.
0022-0833,
47
(
3–4
), pp.
419
444
.
21.
He
,
X.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
22.
Antiga
,
L.
, and
Steinman
,
D. A.
, 2004, “
Robust and Objective Decomposition and Mapping of Bifurcating Vessels
,”
IEEE Trans. Med. Imaging
0278-0062,
23
(
6
), pp.
704
713
.
23.
Myers
,
J. G.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 2001, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
(
2
), pp.
109
120
.
24.
Oshima
,
M.
,
Sakai
,
H.
, and
Torii
,
R.
, 2005, “
Modelling of Inflow Boundary Conditions for Image-based Simulation of Cerebrovascular Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
(
6–7
), pp.
603
617
.
25.
Houston
,
J. G.
,
Gandy
,
S. J.
,
Sheppard
,
D. G.
,
Dick
,
J. B.
,
Belch
,
J. J.
, and
Stonebridge
,
P. A.
, 2003, “
Two-Dimensional Flow Quantitative MRI of Aortic Arch Blood Flow Patterns: Effect of Age, Sex, and Presence of Carotid Atheromatous Disease on Prevalence of Spiral Blood Flow
,”
J. Magn. Reson Imaging
1053-1807,
18
(
2
), pp.
169
174
.
26.
Stonebridge
,
P. A.
, and
Brophy
,
C. M.
, 1991, “
Spiral Laminar Flow in Arteries?
,”
Lancet
0140-6736,
338
(
8779
), pp.
1360
1361
.
27.
Caro
,
C. G.
,
Doorly
,
D. J.
,
Tarnawski
,
M.
,
Scott
,
K. T.
,
Long
,
Q.
, and
Dumoulin
,
C. L.
, 1996, “
Non-Planar Curvature and Branching of Arteries and Non-Planar-Type Flow
,”
Proc. R. Soc. London, Ser. A
1364-5021,
452
(
1944
), pp.
185
197
.
28.
Stonebridge
,
P. A.
,
Hoskins
,
P. R.
,
Allan
,
P. L.
, and
Belch
,
J. F. F.
, 1996, “
Spiral Laminar Flow In Vivo
,”
Clin. Sci.
0323-5084,
91
(
1
), pp.
17
21
.
29.
Masawa
,
N.
,
Glagov
,
S.
, and
Zarins
,
C. K.
, 1994, “
Quantitative Morphologic Study of Intimal Thickening at The Human Carotid Bifurcation: I. Axial and Circumferential Distribution of Maximal Intimal Thickening in Asymptomatic Uncomplicated Plaques
,”
Circulation
0009-7322,
107
(
2
), pp.
137
146
.
30.
King
,
E.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Long
,
Q.
,
Thom
,
S. A.
, and
Parker
,
K. H.
, 2002, “
Quantification of the Non-Planarity of the Human Carotid Bifurcation
,”
Biorheology
0006-355X,
39
(
3–4
), pp.
419
424
.
31.
Thomas
,
J. B.
,
Milner
,
J. S.
, and
Steinman
,
D. A.
, 2002, “
On the Influence of Vessel Planarity on Local Hemodynamics at the Human Carotid Bifurcation
,”
Biorheology
0006-355X,
39
(
3–4
), pp.
443
448
.
32.
Glor
,
F. P.
,
Ariff
,
B.
,
Hughes
,
A. D.
,
Verdonck
,
P. R.
,
Barratt
,
D. C.
,
Augst
,
A. D.
,
Thom
,
S. A. McG.
, and
Xu
,
X. Y.
, 2004, “
Influence of Head Position on Carotid Hemodynamics in Young Adults
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
287
, pp.
H1670
H1691
.
33.
Lu
,
Y.
,
Lu
,
X.
,
Zhuang
,
L.
, and
Wang
,
W.
, 2002, “
Breaking Symmetry in Non-Planar Bifurcations: Distribution of Flow and Wall Shear Stress
,”
Biorheology
0006-355X,
39
(
3–4
), pp.
431
436
.
34.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
D’Avenio
,
G.
,
Balducci
,
A.
, and
Barbaro
,
V.
, 2005, “
A Mathematical Description of Blood Spiral Flow in Vessels: Application to a Numerical Study of Flow in Arterial Bending
,”
J. Biomech.
0021-9290,
38
(
7
), pp.
1375
1386
.
35.
Hyun
,
S.
,
Kleinstreuer
,
C.
,
Longest
,
P. W.
, and
Chen
,
C.
, 2004, “
Particle-Hemodynamics Simulations and Design Options for Surgical Reconstruction of Diseased Carotid Artery Bifurcations
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
4
), pp.
118
195
.
36.
Blyth
,
M. G.
, and
Mestel
,
A. J.
, 2002, “
The Influence of Geometry on Inviscid Decay Rates in Haemodynamic Flows
,”
J. Fluid Mech.
0022-1120,
462
, pp.
185
207
.
37.
Younis
,
H. F.
,
Kaazempur-Mofrad
,
M. R.
,
Chan
,
R. C.
,
Isasi
,
A. G.
,
Hinton
,
D. P.
,
Chau
,
A. H.
,
Kim
,
L. A.
, and
Kamm
,
R. D.
, 2004, “
Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and Its Consequences for Atherogenesis: Investigation of Inter-Individual Variation
,”
Biomech. Model. Mechanobiol.
,
3
(
1
), pp.
17
32
.
38.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
845
856
.
39.
Gijsen
,
F. H. J.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of the Non-newtonian Properties of Blood in the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
0021-9290,
32
(
7
), pp.
601
608
.
40.
Chen
,
J.
, and
Lu
,
X. Y.
, 2004, “
Numerical Investigation of the Non-Newtonian Blood Flow in a Bifurcation Model With a Non-Planar Branch
,”
J. Biomech.
0021-9290,
37
(
12
), pp.
1899
1911
.
41.
Buchanan
,
J. R.
Jr.
,
Kleinstreuer
,
C.
, and
Comer
,
J. K.
, 2000, “
Rheological Effects on Pulsatile Hemodynamics in a Stenosed Tube
,”
Comput. Fluids
0045-7930,
29
(
6
), pp.
695
724
.
42.
Gijsen
,
F. H. J.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90° Curved Tube
,”
J. Biomech.
0021-9290,
32
(
7
), pp.
705
713
.
43.
Perktold
,
K.
,
Resch
,
M.
, and
Florian
,
H.
, 1991, “
Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
4
), pp.
464
475
.
44.
Moore
,
J. A.
,
Steinman
,
D. A.
,
Holdsworth
,
D. W.
, and
Ethier
,
C. R.
, 1999, “
Accuracy of Computational Hemodynamics in Complex Arterial Geometries Reconstructed From Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
0090-6964,
27
(
1
), pp.
32
41
.
45.
Prakash
,
S.
, and
Ethier
,
C. R.
, 2001, “
Requirements for Mesh Resolution in 3D Computational Hemodynamics
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
134
44
.
You do not currently have access to this content.