Background: Vena Cava filters are used to prevent pulmonary embolism in patients with deep vein thrombosis who are unresponsive to anticoagulation therapy. Various filter designs exist in the market with different characteristics distinguishing them. An understanding of the characteristics of these filters is desirable in order to develop better designs. Methods: A computational fluid dynamical study of the flow over an unoccluded stainless steel Greenfield Vena Cava filter (Boston Scientific, Watertown, MA) to determine its properties has been performed. Simulation of flow over a filter placed axisymmetrically in a rounded inferior vena cava has been performed at a Reynolds numbers of 1000 and the consequences of the flow (by studying parameters like shear stress and stagnation zones) have been discussed. Furthermore, a new finite element based numerical method has been developed that allows the study of capturing properties of Inferior Vena Cava filters. The key idea is the introduction of a thin-wire-model (TWM) that enables a drastic reduction in the computational cost while still maintaining control on the physics of the problem. This numerical technique has been applied to evaluate the embolus capture characteristic of a Greenfield filter. Results: The flow around the unoccluded filter is found to be steady and laminar at the conditions studied. A recirculation/stagnation zone develops immediately downstream of the filter head. This zone is significantly larger when the central hole is occluded. The shear stress and stagnation zone properties for such a flow over a Greenfield filter are compared with existing literature (in vitro studies). A graph showing the regions wherein clots escape or get captured has been determined by a means of numerical simulations. The data has further been analyzed to determine the probability of clot capture as function of the clot size. Conclusions: The stagnation zone formed behind the head of the Greenfield filter is found to be smaller in size when compared to that of the same filter with the central hole occluded. A map of the shear stress distribution shows a small region having the potential for thrombogenesis. The non-Newtonian properties of blood are not seen to cause much variation in the flow field when compared to the Newtonian model. However variation in the cava size leads to a significant change in the shear stresses. This study also establishes a novel method wherein computational means are used to determine the efficacy of clot capturing of filters. These techniques can further be used to compare the different characteristics among filters.

1.
Anderson
,
F.
,
Wheeler
,
H.
, and
Goldberg
,
R.
, 1991, “
A Population Based Perspective of the Hospital Incidence and Case Fatality Rates of Deep Vein Thrombosis and Pulmonary Embolism: The Worcester DVT Study
,”
Arch. Intern Med.
0003-9926,
151
, pp.
933
938
.
2.
Hirsh
,
J.
, and
Hoak
,
J.
, 1996, “
Management of Deep Vein Thrombosis and Pulmonary Embolism: A Statement for Healthcare Professionals From the Council on Thrombosis (in Consultation With the Council on Cardiovascular Radiology), American Heart Association
,”
Circulation
0009-7322,
93
, pp.
2212
2245
.
3.
Moser
,
K.
, 1990, “
Venous Thromboembolism
,”
Am. Rev. Respir. Dis.
0003-0805,
141
, pp.
235
249
.
4.
Phillips
,
M. R.
,
Widrich
,
W. C.
, and
Johnson
,
W. C.
, 1980, “
Perforation of the Inferior Vena Cava by the Kimray-Greenfield Filter
,”
Surgery (St. Louis)
0039-6060,
87
, pp.
233
235
.
5.
Greenfield
,
L. J.
,
Kyung
,
J. C.
, and
Tauscher
,
J. R.
, 1990, “
Limitations of Percutaneous Insertion of Greenfield Filters
,”
J. Cardiovasc. Surg.
0021-9509,
31
, pp.
344
350
.
6.
Dalen
,
F.
, and
Albert
,
J. S.
, 1975, “
Natural History of Pulmonary Emboli
,”
Prog. Cardiovasc. Dis.
0033-0620,
17
, pp.
259
270
.
7.
Consensus Development Panel
, 1986, “
Prevention of Venous Thrombosis and Pulmonary Embolism
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
256
, pp.
744
749
.
8.
Goldhaber
,
S. Z.
,
Hennekens
,
C. H.
, and
Evans
,
D. A.
, 1982, “
Factors Associated With Correct Antemortem Diagnosis of Major Pulmonary Embolus
,”
Am. J. Med.
0002-9343,
73
, pp.
822
826
.
9.
Clagett
,
G. P.
, 1988, “
Basic Data Related to Venous Thromboembolism
,”
Ann. Vasc. Surg.
0890-5096,
2
, pp.
402
405
.
10.
Grassi
,
C. J.
,
Swan
,
T. L.
, and
Cardella
,
J. F.
, 2001, “
Quality Improvement Guidelines for Percutaneous Permanent Inferior Vena Cava Filter Placement for the Prevention of Pulmonary Embolism
,”
J. Vasc. Interv Radiol.
1051-0443,
12
, pp.
137
141
.
11.
Athanasoulis
,
C. A.
,
Kaufman
,
J. A.
,
Halpern
,
E. F.
,
Waltman
,
A. C.
,
Geller
,
S. C.
, and
Fan
,
C.
, 2000, “
Inferior Vena Caval Filters: Review of a 26-Year Single-Center Clinical Experience
,”
Radiology
0033-8419,
216
, pp.
54
66
.
12.
Hyers
,
T. M.
,
Hull
,
R. D.
, and
Morris
,
T. A.
, 2001, “
Antithrombotic Therapy for Venous Thromboembolic Disease
,”
Chest
0012-3692,
119
, pp.
176S
193S
.
13.
Decousus
,
H.
,
Leizorovicz
,
A.
,
Parent
,
F.
,
Page
,
Y.
,
Tardy
,
B.
,
Girard
,
P.
,
Laporte
,
S.
,
Faivre
,
R.
,
Charbonnier
,
B.
,
Barral
,
F.
,
Huet
,
Y.
, and
Simonneau
,
G.
, 1998, “
A Clinical Trial of Vena Caval Filters in the Prevention of Pulmonary Embolism in Patients With Proximal Deep-Vein Thrombosis
,”
N. Engl. J. Med.
0028-4793,
338
(
7
), pp.
378
380
.
14.
Hawkins
,
S. P.
, and
Al-Kutoubi
,
A.
, 1992, “
The Simon Nitinol Inferior Vena Cava Filter: Preliminary Experience in the UK
,”
Clin. Radiol.
0009-9260,
46
, pp.
378
380
.
15.
Kim
,
D.
,
Edelman
,
R. R.
,
Margolin
,
C. J.
et al.
, 1992, “
The Simon Nitinol Filter: Evaluation by MR and Ultrasound
,”
Angiology
0003-3197,
43
, pp.
541
548
.
16.
Grassi
,
C. J.
,
Matsumoto
,
A. H.
, and
Teitelbaum
,
G. P.
, 1992, “
Vena Caval Occlusion After Simon Nitinol Filter Placement: Identification With MR Imaging in Patients With Malignancy
,”
J. Vasc. Interv Radiol.
1051-0443,
43
, pp.
541
548
.
17.
Simon
,
M.
,
Athanasoulis
,
C. A.
,
Kim
,
D.
,
Steinberg
,
F. L.
,
Porter
,
D. H.
,
Byse
,
B. H.
,
Kleshinski
,
S.
,
Geller
,
S.
,
Orron
,
D. E.
, and
Waltman
,
A. C.
, 1989, “
Simon Nitinol Inferior Vena Cava Filter: Initial Clinical Experience. Work in Progress
,”
Radiology
0033-8419,
172
(
1
), pp.
99
103
.
18.
Leask
,
R. L.
,
Johnston
,
K. W.
, and
Ohja
,
M.
, 2001, “
In Vitro Hemodynamic Evaluation of a Simon Nitinol Vena Cava Filter: Possible Explanation of IVC Occlusion
,”
J. Vasc. Interv Radiol.
1051-0443,
12
, pp.
613
618
.
19.
Leask
,
R. L.
,
Johnston
,
K. W.
, and
Ohja
,
M.
, 2004, “
Hemodynamic Effects of Clot Entrapment in the TrapEase Inferior Vena Cava Filter
,”
J. Vasc. Interv Radiol.
1051-0443,
15
, pp.
485
490
.
20.
Couch
,
G. G.
,
Kim
,
H.
, and
Ojha
,
M.
, 1997, “
In Vitro Assessment of the Hemodynamic Effects of a Partial Occlusion in a Vena Cava Filter
,”
J. Vasc. Surg.
0741-5214,
25
, pp.
663
672
.
21.
Couch
,
G. G.
,
Johnston
,
K. W.
, and
Ojha
,
M.
, 2000, “
An In Vitro Comparison of the Hemodynamics of Two Inferior Vena Cava Filters
,”
J. Vasc. Surg.
0741-5214,
31
(
3
), pp.
539
549
.
22.
Stein
,
P. D.
, and
Sabbah
,
H. N.
, 1974, “
Measured Turbulence and Its Effect on Thrombus Formation
,”
Circ. Res.
0009-7330,
35
, pp.
608
614
.
23.
Greenfield
,
L. J.
, and
Proctor
,
M. C.
, 1992, “
Experimental Embolic Capture by Asymmetric Greenfield Filters
,”
J. Vasc. Surg.
0741-5214,
16
, pp.
436
444
.
24.
Hu
,
H. H.
, 2002, “
Computational Fluid Dynamics
,” Chap. 11 in
Fluid Dynamics
,
P. K.
Kundu
and
I. M.
Cohen
(eds.), 2nd and 3rd eds.,
Academic Press
,
New York
.
26.
FEMLAB is a product of COMSOL AB, Sweden.
27.
George
,
P. L.
, 1991,
Automatic Mesh Generation, Application to Finite Element Methods
,
Wiley
,
New York
.
28.
Hu
,
H. H.
,
Patankar
,
N.
, and
Zhu
,
M.
, 2001, “
Direct Numerical Simulations of Fluid-Solid Systems Using Arbitrary-Lagrangian-Eulerian Technique
,”
J. Comput. Phys.
0021-9991,
169
, pp.
427
462
.
29.
Peskin
,
C. S.
, and
McQueen
,
D. M.
, 1992, “
Cardiac Fluid Dynamics
,”
Crit. Rev. Biomed. Eng.
0278-940X,
20
, pp.
451
459
.
30.
Cheng
,
C. P.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
, 2003, “
Inferior Vena Caval Hemodynamics Quantified In Vivo at Rest and During Cycling Exercise Using Magnetic Resonance Imaging
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
284
, pp.
H1161
H1167
.
31.
Batchelor
,
G. K.
, 1980,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge
.
32.
Gresho
,
P. M.
, 1991, “
Incompressible Fluid Dynamics: Some Fundamental Formulation Issues
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
413
453
.
33.
Turitto
,
V. T.
, and
Hall
,
C. L.
, 1998, “
Mechanical Factors Influencing Hemostasis and Thrombosis
,”
Thromb. Res.
0049-3848,
92
, pp.
25
31
.
34.
Wurzinger
,
L. J.
, and
Blasberg
,
P.
,
Schmid-Schonbein
,
H.
, 1985, “
Towards a Concept of Thrombosis in Accelerated Flow: Rheology, Fluid Dynamics, and Biochemistry
,”
Biorheology
0006-355X,
22
, pp.
437
449
.
35.
Schoephoerster
,
R. T.
,
Oynes
,
F.
,
Nunez
,
G.
,
Kapadvanjwala
,
M.
, and
Dewanjee
,
M. K.
, 1993, “
Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposit in on Artificial Surfaces
,”
Arterioscler. Thromb.
1049-8834,
13
, pp.
1806
1813
.
36.
Chien
,
S.
, 1970, “
Shear Dependence of Effective Cell Volume as a Determinant of Blood Viscosity
,”
Science
0036-8075,
168
, pp.
977
979
.
37.
Katsamouris
,
A. A.
,
Waltman
,
A. C.
,
Delichatsios
,
M. A.
, and
Athanasoulis
,
C. A.
, 1988, “
Inferior Vena Cava Filters: In Vitro Comparison of Clot Trapping and Flow Dynamics
,”
Radiology
0033-8419,
166
, pp.
361
366
.
38.
Mohan
,
C. R.
,
Hoballah
,
J. J.
,
Sharp
,
W. J.
,
Kresowik
,
T. F.
,
Lu
,
C. T.
, and
Corson
,
J. D.
, 1995, “
Comparative Efficacy and Complications of Vena Caval Filters
,”
J. Vasc. Surg.
0741-5214,
21
, pp.
235
246
.
39.
Simon
,
M.
,
Rabkin
,
D. J.
,
Kleshinski
,
S.
,
Kim
,
D.
, and
Ransil
,
B. J.
, 1993, “
Comparative Evaluation of Clinically Available Inferior Vena Cava Filters With an In Vitro Physiologic Simulation of the Vena Cava
,”
Radiology
0033-8419,
189
, pp.
769
774
.
40.
Tan
,
T. K.
,
Oudkerk
,
J.
, and
van Beek
,
E. J. R.
, 2004, “
Deep Vein Thrombosis and Pulmonary Embolism
,” in
Comprehensive Vascular and Endovascular Surgery
,
J. W.
Hallett
,
J. L.
Mills
,
J. J.
Earnshaw
, and
J. A.
Reekers
(eds.),
Mosby
,
Philadelphia
, pp.
625
632
.
41.
Shankaran
,
H.
,
Alexandridis
,
P.
, and
Neelamegham
,
S.
, 2003, “
Aspects of Hydrodynamic Shear Regulating Shear-Induced Platelet Activation and Self-Association of von Willebrand Factor in Suspension
,”
Blood
0006-4971,
101
, pp.
2637
2645
.
42.
Huang
,
P. Y.
, and
Hellums
,
J. D.
, 1993, “
Aggregation and Disaggregation Kinetics of Human Blood Platelets. I. Development and Validation of a Population Balance Method
,”
Biophys. J.
0006-3495,
65
, pp.
334
343
.
43.
Huang
,
P. Y.
, and
Hellums
,
J. D.
, 1993, “
Aggregation and Disaggregation Kinetics of Human Blood Platelets. II. Shear-Induced Platelet Aggregation
,”
Biophys. J.
0006-3495,
65
, pp.
344
353
.
44.
Huang
,
P. Y.
, and
Hellums
,
J. D.
, 1993, “
Aggregation and Disaggregation Kinetics of Human Blood Platelets. III. Disaggregation Under Shear Stress of Platelet Aggregation
,”
Biophys. J.
0006-3495,
65
, pp.
354
361
.
45.
Tandon
,
P.
, and
Diamond
,
S. L.
, 1997, “
Hydrodynamic Effects and Receptor Interactions of Platelets and Their Aggregates in Linear Shear Flow
,”
Biophys. J.
0006-3495,
73
, pp.
2819
2835
.
46.
Konstantopoulos
,
K.
,
Neelamegham
,
S.
,
Burns
,
A. R.
,
Hentzen
,
E.
,
Kansas
,
G. S.
,
Snapp
,
K. R.
,
Berg
,
E. L.
,
Hellums
,
J. D.
,
Smith
,
C. W.
,
McIntire
,
L. V.
, and
Simon
,
S. I.
, 1998, “
Venous Levels of Shear Support Neutrophil-Platelet Adhesion and Neutrophil Aggregation in Blood via P-Selectin and β2-Integrain
,”
Circulation
0009-7322,
98
, pp.
873
882
.
You do not currently have access to this content.