A major consequence of stent implantation is restenosis that occurs due to neointimal formation. This patho-physiologic process of tissue growth may not be completely eliminated. Recent evidence suggests that there are several factors such as geometry and size of vessel, and stent design that alter hemodynamic parameters, including local wall shear stress distributions, all of which influence the restenosis process. The present three-dimensional analysis of developing pulsatile flow in a deployed coronary stent quantifies hemodynamic parameters and illustrates the changes in local wall shear stress distributions and their impact on restenosis. The present model evaluates the effect of entrance flow, where the stent is placed at the entrance region of a branched coronary artery. Stent geometry showed a complex three-dimensional variation of wall shear stress distributions within the stented region. Higher order of magnitude of wall shear stress of 530dyncm2 is observed on the surface of cross-link intersections at the entrance of the stent. A low positive wall shear stress of 10dyncm2 and a negative wall shear stress of 10dyncm2 are seen at the immediate upstream and downstream regions of strut intersections, respectively. Modified oscillatory shear index is calculated which showed persistent recirculation at the downstream region of each strut intersection. The portions of the vessel where there is low and negative wall shear stress may represent locations of thrombus formation and platelet accumulation. The present results indicate that the immediate downstream regions of strut intersections are areas highly susceptible to restenosis, whereas a high shear stress at the strut intersection may cause platelet activation and free emboli formation.

1.
Heart and Stroke Statistical Update
, 2001, American Heart Association, pp.
1
33
.
2.
Kastrati
,
A.
, and
Mehilli
,
J.
, et al.
, 2001, “
Restenosis After Coronary Placement of Various Stent Types
,”
Am. J. Cardiol.
0002-9149,
87
, pp.
34
39
.
3.
Kastrati
,
A.
, and
Mehilli
,
J.
, et al.
, 2001, “
Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO) Trial
,”
Circulation
0009-7322,
103
(
23
), pp.
2816
2821
.
4.
Berry
,
J. L.
,
Santamarina
,
A.
,
Moore
,
J. E.
,
Roychowdhury
,
S.
, and
Routh
,
W. D.
, 2000, “
Experimental and Computational Flow Evaluation of Coronary Stents
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
386
398
.
5.
Moore
,
J. E.
, and
Berry
,
J. L.
, 2002, “
Fluid and Solid Mechanical Implications of Vascular Stenting
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
498
508
.
6.
Frank
,
A. O.
,
Walsh
,
P. W.
, and
Moore
,
J. E.
, 2002, “
Computational Fluid Dynamics and Stent Design
,”
Artif. Organs
0160-564X,
26
(
7
), pp.
614
621
.
7.
Henry
,
F. S.
, 2001, “
Simulation of Flow Through Model Stented Arteries
,”
Proceedings of the Summer Bioengineering Conference
, June 27–July 1, Snowbird, Utah,
BED-50
, pp.
329
330
.
8.
Wentzel
,
J. J.
,
Krams
,
R.
,
Schuurbiers
,
J. C. H.
,
Oomen
,
J. A.
,
Kloet
,
J.
,
van der Giesen
,
W. J.
,
Serruys
,
P. W.
, and
Slager
,
C. J.
, 2001, “
Relationship Between Neointimal Thickness and Shear Stress After Wallstent Implantation in Human Coronary Arteries
,”
Circulation
0009-7322,
103
(
13
), pp.
1740
1745
.
9.
Wentzel
,
J. J.
,
Deirdre
,
M. W.
,
Van der Giesen
,
W. J.
,
van Beusekom
,
H. M. M.
,
Andhyiswara
,
I.
,
Serruys
,
P. W.
,
Slager
,
C. J.
, and
Krams
,
R.
, 2000, “
Coronary Stent Implantation Changes 3-D Vessel Geometry and 3-D Shear Stress Distribution
,”
J. Biomech.
0021-9290,
33
, pp.
1287
1295
.
10.
Berry
,
J. L.
,
Moore
,
J. E.
,
Manoach
,
E.
, and
Rolland
,
P. H.
, 2002, “
Hemodynamics and Wall Mechanics of a Compliance Matching Stent: In Vitro and In Vivo Analysis
,”
J. Vasc. Interv Radiol.
1051-0443,
13
, pp.
97
105
.
11.
Rogers
,
C.
, and
Edelman
,
E. R.
, 1995, “
Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis
,”
Circulation
0009-7322,
91
, pp.
2995
3001
.
12.
Edelman
,
E. R.
, and
Rogers
,
C.
, 1998. “
Pathobiologic Responses to Stenting
,”
Am. J. Cardiol.
0002-9149,
81
(
7A
), pp.
4E
6E
.
13.
LaDisa
,
J. F.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2003, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
972
980
.
14.
Suo
,
J.
,
Oshinski
,
J.
, and
Giddens
,
D.
, 2003, “
Entrance Flow Patterns in the Coronary Arteries
,”
Proceedings of the Summer Bioengineering Conference
, June 25–29, Sonesta Beach Resort, Key Biscayne, Florida,
BED-50
, pp.
513
514
.
15.
Cho
,
Y. I.
,
Back
,
L. H.
,
Crawford
,
D. W.
, and
Cuffel
,
R. F.
, 1983, “
Experimental Study of Pulsatile and Steady Flow Through a Smooth Tube and an Atherosclerotic Coronary Artery Casting of Man
,”
J. Biomech.
0021-9290,
16
, pp.
933
946
.
16.
Sibley
,
D. H.
,
Millar
,
H. D.
,
Hartley
,
C. J.
, and
Whitlow
,
P. L.
, 1986, “
Subselective Measurement of Coronary Blood Flow Velocity Using a Steerable Doppler Catheter
,”
J. Am. Coll. Cardiol.
0735-1097,
8
, pp.
1332
1340
.
17.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
, 2000, “
Physiological Flow Simulation in Residual Human Stenoses After Coronary Angioplasty
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
310
320
.
18.
Banerjee
,
R. K.
,
Back
,
L. H.
, and
Cho
,
Y. I.
, 2001, “
Computational Fluid Dynamics Modeling Techniques, Using Finite Element Methods to Predict Arterial Blood Flow
,”
Biomechanical Systems Techniques & Applications: Biofluid Methods in Vascular and Pulmonary Systems
,
CRC
, Boca Raton, FL,
4
, Chap. 8.
19.
Cho
,
Y. I.
, and
Kensey
,
K. R.
, 1991, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel: Part I, Steady Flows
,”
Biorheology
0006-355X,
28
, pp.
241
262
.
20.
Nicholas
,
W. W.
, and
O’Rourke
,
M. F.
, 1998,
McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
,
Oxford University Press
, New York, pp.
396
401
.
21.
Fluent User Manual
, ver. 6.1.18, 2003,
Fluent Inc.
, Lebanon, NH.
22.
Yongchareon
,
W.
, and
Young
,
D. F.
, 1979, “
Initiation of Turbulence in Models of Arterial Stenosis
,”
J. Biomech.
0021-9290,
12
, pp.
185
196
.
23.
Azuma
,
T.
, and
Fukushima
,
T.
, 1976, “
Flow Patterns in Stenotic Blood Vessel Models
,”
Biorheology
0006-355X,
13
, pp.
337
355
.
24.
Barakat
,
A. I.
, and
Cheng
,
E. T.
, 2000, “
Numerical Simulation of Fluid Mechanical Disturbance Induced by Intravascular Stents
,”
Proceedings of the 11th International Conference on Mechanics in Medicine and Biology
,
Maui
,
Hawaii
, April 2–5.
25.
Barakat
,
A. I.
, and
Schachter
,
L. G.
, 2001, “
Computational Study of Arterial Flow Disturbance Induced by Intravascular Stents
,”
Proceedings of the Summer Bioengineering Conference
, June 27–July 1, Snowbird, Utah,
BED-50
, pp.
877
878
.
26.
Bluestein
,
D.
,
Li
,
Y. M.
, and
Krukenkamp
,
I. B.
, 2002, “
Free Emboli Formation in the Wake of Bi-leaflet Mechanical Heart Valves and the Effects of Implantation Techniques
,”
J. Biomech.
0021-9290,
35
, pp.
1553
1540
.
27.
Caro
,
C. G.
,
Fitzgerald
,
J. M.
, and
Schroter
,
R. C.
, 1969, “
Arterial Wall Shear and Distribution of Early Atheroma in Man
,”
Nature (London)
0028-0836,
223
, pp.
1159
1161
.
28.
Nerem
,
R. M.
, and
Levesque
,
M. J.
, 1987, “
Fluid Mechanics in Atherosclerosis
,”
Handbook of Bioengineering
,
R.
Skalak
and
S.
Chein
, eds., Chap. 21, 21.1–21.22.
You do not currently have access to this content.