Background. The vibrational characteristics of any object are directly dependent on the physical properties of that object. Therefore, changing the physical properties of an object will cause the object to adopt changed natural frequencies. A fracture in a bone results in the loss of mechanical stability of the bone. This change in mechanical properties of a bone should result in a change of the resonant frequencies of that bone. A vibrational method for bone evaluation has been introduced. Method of approach. This method uses the radiation force of focused amplitude-modulated ultrasound to exert a vibrating force directly, and remotely, on a bone. The vibration frequency is varied in the range of interest to induce resonances in the bone. The resulting bone motion is recorded and the resonance frequencies are determined. Experiments are conducted on excised rat femurs and resonance frequencies of intact, fractured, and bonded (simulating healed) bones are measured. Results. The experiments demonstrate that changes in the resonance frequency are indicative of bone fracture and healing, i.e., the fractured bone exhibits a lower resonance frequency than the intact bone, and the resonance frequency of the bonded bone approaches that of the intact bone. Conclusion. It is concluded that the proposed radiation force method may be used as a remote and noninvasive tool for monitoring bone fracture and healing process, and the use of focused ultrasound enables one to selectively evaluate individual bones.

1.
Lane
,
J. M.
, 1987, “
Fracture Healing
,”
Bristol-Myers/Zimmer Orthopedic Symposium
,
J. M.
Lane
ed.,
Churchill Livingstone Inc
,
New York
, pp.
23
26
.
2.
Lowet
,
G.
, and
Van der Perre
,
G.
, 1996, “
Ultrasound Velocity Measurement in Long Bones: Measurement Method and Simulation of Ultrasound Wave Propagation
,”
J. Biomech.
0021-9290,
29
(
10
), pp.
1255
1262
.
3.
Chehade
,
M. J.
,
Pohl
,
A. P.
,
Pearcy
,
M. J.
, and
Nawana
,
N.
, 1997, “
Clinical Implications of Stiffness and Strength Changes in Fracture Healing
,”
J. Bone Joint Surg. Br.
0301-620X,
79
(
1
), pp.
9
12
.
4.
Singh
,
V. R.
,
Yadav
,
S.
, and
Adya
,
V. P.
, 1989, “
Role of Natural Frequency of Bone as a Guide for Detection of Bone Fracture Healing
,”
J. Biomed. Eng.
0141-5425,
11
(
6
), pp.
457
461
.
5.
Van Der Perre
,
G.
, and
Lowet
,
G.
, 1996, “
In vivo Assessment of Bone Mechanical Properties by Vibration and Ultrasonic Wave Propagation Analysis
,”
Bone (N.Y.)
8756-3282,
18
(
1
), pp.
29S
35S
.
6.
Dhoerty
,
W. P.
,
Bovill
,
E. G.
, and
Wilson
,
E. L.
, 1974, “
Evaluation of the Use of Resonant Frequencies to Characterize Physical Properties of Human Long Bones
,”
J. Biomech.
0021-9290,
7
(
6
), pp.
559
561
.
7.
Lowet
,
G.
,
Dayuan
,
X.
, and
Van der Perre
,
G.
, 1996, “
Study of the Vibrational Behaviour of a Healing Tibia Using Finite Element Modeling
,”
J. Biomech.
0021-9290,
29
(
8
), pp.
1003
1010
.
8.
Jurist
,
J. M.
, and
Kianian
,
K.
, 1973, “
Three Models of the Vibrating Ulna
,”
J. Biomech.
0021-9290,
6
(
4
), pp.
331
342
.
9.
Couteau
,
B.
,
Hobatho
,
M. C.
,
Darmana
,
R.
,
Brignola
,
J. C.
, and
Arlaud
,
J. Y.
, 1998, “
Finite Element Modelling of the Vibrational Behaviour of the Human Femur Using CT-based Individualized Geometrical and Material Properties
,”
J. Biomech.
0021-9290,
31
(
4
), pp.
383
386
.
10.
Siffert
,
R. S.
, and
Kaufman
,
J. J.
, 1996, “
Acoustic Assessment of Fracture Healing. Capabilities and Limitations of “A Lost Art
,”
Am. J. Orthop.
1078-4519,
25
(
9
), pp.
614
618
.
11.
Panteliou
,
S. D.
,
Abbasi-Jahromi
,
H.
,
Dimarogonas
,
A. D.
,
Kohrt
,
W.
, and
Civitelli
,
R.
, 1999, “
Low-Frequency Acoustic Sweep Monitoring of Bone Integrity and Osteporosis
,”
J. Biomech. Eng.
0148-0731,
121
(
4
), pp.
423
431
.
12.
Panteliou
,
S. D.
,
Xirafaki
,
A. L.
,
Panagiotopoulos
,
E.
,
Varakis
,
J. N.
,
Vagenas
,
N. V.
, and
Kontoyannis
,
C. G.
, 2004,
Modal Damping for Monitoring Bone Integrity and Osteoporosis
,”
J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
1
5
.
13.
Panteliou
,
S. D.
, and
Dimarogonas
,
A. D.
, 1997, “
Thermodynamic Damping in Porous Materials With Ellipsoidal Cavities
,”
201
(
5
), pp.
555
565
.
14.
Panteliou
,
S. D.
,
Chondros
,
T. G.
, and
Argyrakis
,
V. C.
, 2001, “
Damping Factor as Indicator of Crack Severity
,”
241
(
2
), pp.
235
245
.
15.
Benirschke
,
S. K.
,
Mirels
,
H.
,
Jones
,
D.
, and
Tencer
,
A. F.
, 1993, “
The Use of Resonant Frequency Measurements for the Noninvasive Assessment of Mechanical Stiffness of the Healing Tibia
,”
J. Orthop. Trauma
0890-5339,
7
(
1
), pp.
64
71
.
16.
Tower
,
S. S.
,
Beals
,
R. K.
, and
Duwelius
,
P. J.
, 1993, “
Resonant Frequency Analysis of the Tibia as a Measure of Fracture Healing
,”
J. Orthop. Trauma
0890-5339,
7
(
6
), pp.
552
557
.
17.
Westervelt
,
P. J.
, 1951, “
The Theory of Steady Force Caused by Sound Waves
,”
J. Acoust. Soc. Am.
0001-4966,
23
(
4
), pp.
312
315
.
18.
Westervelt
,
P. J.
, 1957, “
Acoustic Radiation Pressure
,”
J. Acoust. Soc. Am.
0001-4966,
29
(
1
), pp.
26
29
.
19.
Fatemi
,
M.
, and
Greenleaf
,
J. F.
, 1998, “
Ultrasound Stimulated Vibro-Acoustic Spectroscopy
,”
Science
0036-8075,
280
, pp.
82
85
.
20.
Fatemi
,
M.
, and
Greenleaf
,
J. F.
, 1999, “
Vibro-Acoustography. An Imaging Modality Based on Ultrasound Stimulated Acoustic Emission
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
, pp.
6603
6608
.
21.
Blevins
,
R.
, 2001,
Formulas for Natural Frequency and Mode Shape
,
Krieger Publishing Company
,
Malabar, FL
, p.
108
.
22.
Cameron
,
J. R.
,
James
,
G.
, and
Grant
,
S. M.
, 1999,
Grant RM. Physics of the Body
, 2nd ed.,
Medical Physics Publishing
,
Madison, WI
, p.
96
.
23.
Mattila
,
P. T.
,
Svanberg
,
M. J.
,
Pokka
,
P.
, and
Knuuttila
,
M. L.
, 1998, “
Dietary Xylitol Protects Against Weakening of Bone Biomechanical Properties in Ovariectomized Rats
,”
J. Nutr.
0022-3166,
128
(
10
), pp.
1811
1814
.
24.
Fatemi
,
M.
,
Wold
,
L. E.
,
Alizad
,
A.
, and
Greenleaf
,
J. F.
, 2002, “
Vibro-Acoustic Tissue Mammography
,”
IEEE Trans. Med. Imaging
0278-0062,
21
(
1
), pp.
1
8
.
25.
Alizad
,
A.
,
Fatemi
,
M.
,
Wold
,
L. E.
, and
Greenleaf
,
J. F.
, 2004, “
Performance of Vibro-Acoustography in Detecting of Microcalcifications in Excised Human Breast Tissue: a Study on 74 Breast Tissue Samples
,”
IEEE Trans. Med. Imaging
0278-0062,
23
(
3
), pp.
307
312
.
26.
Alizad
,
A.
,
Whaley
,
D. H.
,
Greenleaf
,
J. F.
, and
Fatemi
,
M.
, 2005, “
Potential Applications of Vibro-Acoustography in Breast Imaging
,”
Technol. Cancer Res. Treat.
1533-0346,
4
(
2
), pp.
151
158
.
27.
Fatemi
,
M.
,
Manduca
, and
A.
,
Greenleaf
,
J. F.
, 2003, “
Imaging Elastic Properties of Biological Tissues by Low Frequency Harmonic Vibration
,”
Proc. IEEE
0018-9219,
91
(
3
), pp.
1503
1519
.
28.
Alizad
,
A.
,
Fatemi
,
M.
,
Whaley
,
D. H.
, and
Greenleaf
,
J. F.
, 2004, “
Application of Vibro-Acoustography for Detection of Calcified Arteries in Breast Tissues
,”
J. Ultrasound Med.
0278-4297,
23
, pp.
267
273
.
You do not currently have access to this content.