Articular cartilage is known to behave nonlinearly for large deformations. Mechanical properties derived from small strain experiments yield excessively large deformations in finite element models used in the study of severe blunt impact to joints. In this manuscript, a method is presented to determine the nonlinear elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model. The elastic properties were estimated by fitting two force-displacement curves (in rapid loading and at equilibrium) obtained from large deformation indentation relaxation tests on cartilage using a nonporous spherical indentor. The solid skeleton of the cartilage was modeled as a transversely isotropic hypo-elastic material and a commercial finite element program was employed to solve the problem of a layer indented by a rigid sphere. Components of the hypo-elasticity tensor were made dependent on deformation according to the variations defined by a transversely isotropic hyperelastic formulation given earlier by others. Material incompressibility was assumed during the initial stage of rapid loading. The analysis was utilized for the determination of in situ properties of rabbit retropatellar cartilage at large deformations. The model was able to fit the material response to rapid loading and equilibrium indentation test data to approximately 50 percent strain. This material model suggested even higher percentage of stress supported by the fluid phase of cartilage than given earlier by small deformation theories of biphasic cartilage. [S0148-0731(00)01401-1]

1.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic creep and stress relaxation of articular cartilage: Theory and experiment
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
2.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study
,”
J. Biomech.
,
22
, pp.
853
861
.
3.
Jurvelin
,
J.
,
Saamanen
,
A.
,
Arokoski
,
J.
,
Helminen
,
H. J.
,
Kiviranta
,
I.
, and
Tammi
,
M.
,
1988
, “
Biomechanical properties of the canine knee articular cartilage as related to matrix proteoglycans and collagen
,”
J. Engineering in Medicine
,
17
, pp.
157
162
.
4.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and mechanical determination of Poisson’s ratio of adult bovine humeral cartilage
,”
J. Biomech.
,
30
, pp.
235
241
.
5.
Cohen
,
B.
,
Gardner
,
T. R.
, and
Ateshian
,
G. A.
,
1993
, “
The influence of transverse isotropy on cartilage indentation behavior. A study on the human humeral head
,”
Trans. Orthop. Res. Soc.
,
18
, p.
185
185
.
6.
Garcia, J. J., Altiero, N. J., and Haut, R. C., 1998a, “A method to determine material properties of biphasic cartilage based on a transversely isotropic model,” Proc. 8th Injury Prevention Through Biomechanics Symposium, Wayne State University, pp. 145–156.
7.
Atkinson
,
P. J.
, and
Haut
,
R. C.
,
1995
, “
Subfracture insult to the human cadaver patellofemoral joint produces occult injury
,”
J. Orthop. Res.
,
13
, pp.
936
944
.
8.
Haut
,
R. C.
,
Ide
,
T. M.
, and
DeCamp
,
C. E.
,
1995
, “
Mechanical responses of the rabbit patello-femoral joint to blunt impact
,”
ASME J. Biomech. Eng.
,
117
, pp.
402
408
.
9.
Newberry
,
W.
,
Zukosky
,
D.
, and
Haut
,
R. C.
,
1997
, “
Subfracture insult to a knee joint causes alterations in bone and in the functional stiffness of overlying cartilage
,”
J. Orthop. Res.
,
15
, pp.
450
455
.
10.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Molinin
,
T. I.
, and
Mow
,
V. C.
,
1991
, “
Interspecies comparison of in situ intrinsic mechanical properties of distal femoral cartilage
,”
J. Orthop. Res.
,
9
, pp.
330
340
.
11.
Holmes
,
M. H.
,
1986
, “
Finite deformation of soft tissue: Analysis of a mixture model in uni-axial compression
,”
ASME J. Biomech. Eng.
,
108
, pp.
372
381
.
12.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1990
, “
A finite deformation theory for cartilage and other soft hydrated connective tissues—I. Equilibrium results
,”
J. Biomech.
,
23
, pp.
145
155
.
13.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration
,”
J. Biomech.
,
23
, pp.
1145
1156
.
14.
Almeida, E. S., Spilker, R. L., and Holmes M. H., 1995, “A transversely isotropic constitutive law for the solid matrix of articular cartilage,” Adv. in Bioengineering, ASME BED-Vol. 29, pp. 161–162.
15.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1997
, “
Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments
,”
J. Biomech.
,
30
, pp.
1157
1164
.
16.
Almeida
,
E. S.
, and
Spilker
,
R. L.
,
1997
, “
Mixed and penalty finite element models for the nonlinear behavior of biphasic soft tissues in finite deformation: Part II—Nonlinear examples
,”
Comput. Meth. Biomech. Biomed. Eng.
,
1
, pp.
151
170
.
17.
Truesdell
,
C.
,
1955
, “
Hypo-elasticity
,”
J. Rational Mechanics and Analysis
,
4
, pp.
83
133
.
18.
Noll
,
W.
,
1955
, “
On the continuity of the solid and fluid states
,”
J. Rational Mechanics and Analysis
,
4
, pp.
3
81
.
19.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
,
1997
, “
Hypo-elasticity model based upon the logarithmic stress rate
,”
J. Elast.
,
47
, pp.
51
68
.
20.
Bernstein
,
B.
,
1960
, “
Hypo-elasticity and elasticity
,”
Arch. Ration. Mech. Anal.
,
6
, pp.
90
104
.
21.
Eberhardt
,
A. W.
,
Keer
,
L. M.
,
Lewis
,
J. L.
, and
Vithoontien
,
V.
,
1990
, “
An analytical model of joint contact
,”
ASME J. Biomech. Eng.
,
112
, pp.
407
413
.
22.
Garcia
,
J. J.
,
Altiero
,
N. J.
, and
Haut
,
R. C.
,
1998b
, “
An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load
,”
ASME J. Biomech. Eng.
,
120
, pp.
608
613
.
23.
Hayes
,
W. C.
,
Keer
,
L. M.
,
Herrman
,
G.
, and
Mockros
,
L. F.
,
1972
, “
A mathematical analysis for indentation tests of articular cartilage
,”
J. Biomech.
,
5
, pp.
541
555
.
24.
MARC Analysis Research Corporation, 1992, “MARC reference library. Volume D: User subroutines and special routines,” Palo Alto, CA.
25.
Kelkar, R., and Ateshian, G. A., 1995, “Contact creep response between a rigid impermeable cylinder and a biphasic cartilage layer using integral transforms,” Proc. 1995 Bioengineering Conference, ASME BED-Vol. 29, pp. 313–314.
26.
Soltz, M. A., and Ateshian, G. A., 1997, “Experimental measurement of cartilage interstitial fluid pressurization under confined compression stress-relaxation,” Adv. in Bioengineering, ASME BED-Vol. 36, pp. 159–160.
27.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1986
, “
An analysis of the unconfined compression of articular cartilage
,”
ASME J. Biomech. Eng.
,
106
, pp.
165
173
.
28.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
,
1984
, “
Fluid transport and mechanical properties of articular cartilage: a review
,”
J. Biomech.
,
17
, pp.
377
394
.
29.
Li, X., 1994, “A criterion to predict damage in articular cartilage due to blunt impact,” Ph.D. Dissertation, Michigan State University.
30.
Anderson
,
D. D.
,
Brown
,
T. D.
,
Yang
,
K. H.
, and
Radin
,
E. L.
,
1990
, “
A dynamic finite element analysis of impulsive loading of the extension-splinted rabbit knee
,”
ASME J. Biomech. Eng.
,
112
, pp.
119
128
.
31.
Anderson
,
D.
,
Brown
,
T.
, and
Radin
,
E.
,
1991
, “
Stress wave effects in a finite element analysis of an impulsively loaded articular joint
,”
Part H, J. Engineering in Medicine
,
205
, pp.
27
34
.
32.
Suh
,
J.-K.
, and
Bai
,
S.
,
1998
, “
Finite element formulation of a biphasic poroviscoelastic model of articular cartilage
,”
ASME J. Biomech. Eng.
,
120
, pp.
195
201
.
You do not currently have access to this content.