0
Research Papers

Optimization of Micropencil Grinding Tools Via Electrical Discharge Machining

[+] Author and Article Information
Peter A. Arrabiyeh

Institute for Manufacturing Technology and
Production System,
TUK University of Kaiserslautern,
P.O. Box 3049,
Kaiserslautern 67653, Germany
e-mail: Peter.Arrabiyeh@mv.uni-kl.de

Maximilian Dethloff

Institute for Manufacturing Technology and
Production System,
TUK University of Kaiserslautern,
P.O. Box 3049,
Kaiserslautern 67653, Germany
e-mail: maxdethloff@gmail.com

Christopher Müller

Institute for Manufacturing Technology and
Production System,
TUK University of Kaiserslautern,
P.O. Box 3049,
Kaiserslautern 67653, Germany
e-mail: mueller.christopher@mailbox.org

Benjamin Kirsch

Institute for Manufacturing Technology and
Production System,
TUK University of Kaiserslautern,
P.O. Box 3049,
Kaiserslautern 67653, Germany
e-mail: Benjamin.Kirsch@mv.uni-kl.de

Jan C. Aurich

Institute for Manufacturing Technology and
Production System,
TUK University of Kaiserslautern,
P.O. Box 3049,
Kaiserslautern 67653, Germany
e-mail: FBK@mv.uni-kl.de

1Corresponding author.

Manuscript received June 29, 2018; final manuscript received November 21, 2018; published online January 17, 2019. Assoc. Editor: Radu Pavel.

J. Manuf. Sci. Eng 141(3), 031005 (Jan 17, 2019) (9 pages) Paper No: MANU-18-1498; doi: 10.1115/1.4042110 History: Received June 29, 2018; Revised November 21, 2018

Micropencil grinding tools (MPGTs) are micromachining tools that use superabrasives like diamond and cubic boron nitride (cBN) grits to manufacture complex microstructures in a broad range of hard and brittle materials. MPGTs suffer from a rather low tool life, when compared to other more established microprocessing methods. It was documented that when used on hardened steel workpieces, MPGTs suffer from a large amount of adhesions, mostly located at the pivot point of the tool. These adhesions lead to the clogging of the abrasive layer and ultimately in tool failure. Another problem this machining process suffers from is the formation of substructures (smaller channels inside the microchannels). The pivot is usually less prone to abrasive wear, has higher protrusion, and is therefore responsible for the deepest substructures. These substructures can easily take up half the depth of cut, obstructing the function of machined microchannels—it is one of the major flaws of this micromachining process. A micro-electrical discharge machining method (μEDM) can solve these issues by manufacturing a cavity at the pivot of these tools. A novel method that uses measurement probes to position the substrate above the μEDM electrode is implemented and a parameter study to determine the cavity manufacturing parameters is conducted for substrates with diameters < 40 μm. The goal is to demonstrate the first ever complete and reliable manufacturing process for MPGTs with a cavity and to demonstrate the advantages they provide in a machining process when compared to regular MPGTs.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Engmann, J. , 2011, Galvanisch Gebundene Mikroschleifstifte: Entwicklung, Herstellung Und Einsatz, Technische Universität, Kaiserslautern, Germany.
Liao, Y.-S. , Chen, S.-T. , Lin, C.-S. , and Chuang, T.-J. , 2005, “Fabrication of High Aspect Ratio Microstructure Arrays by Micro Reverse Wire-EDM,” J. Micromech. Microeng., 15(8), pp. 1547–1555. [CrossRef]
Schlautmann, S. , Wensink, H. , Schasfoort, R. , Elwenspoek, M. , and Berg, A. V. D. , 2001, “Powder-Blasting Technology as an Alternative Tool for Microfabrication of Capillary Electrophoresis Chips With Integrated Conductivity Sensors,” J. Micromech. Microeng., 11(4), pp. 386–389.
Lacharme, F. , and Gijs, M. A. M. , 2006, “Pressure Injection in Continuous Sample Flow Electrophoresis Microchips,” Sens. Actuators B: Chem., 117(2), pp. 384–390. [CrossRef]
Wensink, H. , 2002, Fabrication of Microstructures by Powder Blasting, University of Twente, Enschede, The Netherlands.
Kirsch, B. , Bohley, M. , Arrabiyeh, P. A. , and Aurich, J. C. , 2017, “Application of Ultra-Small Micro Grinding and Micro Milling Tools: Possibilities and Limitations,” Micromachines, 8(9), p. 261. [CrossRef]
Aziz, M. , Ohnishi, O. , and Onikura, H. , 2012, “Innovative Micro Hole Machining With Minimum Burr Formation by the Use of Newly Developed Micro Compound Tool,” J. Manuf. Processes, 14(3), pp. 224–232. [CrossRef]
Dornfeld, D. , Min, S. , and Takeuchi, Y. , 2006, “Recent Advances in Mechanical Micromachining,” CIRP Ann., 55(2), pp. 745–768. [CrossRef]
Arrabiyeh, P. A. , Kirsch, B. , and Aurich, J. C. , 2017, “Development of Micro Pencil Grinding Tools Via an Electroless Plating Process,” ASME J. Micro Nano-Manuf., 5(1), p. 011002. [CrossRef]
Hoffmeister, H.-W. , and Hlavac, M. , 2002, “Schleifen Von Mikrostrukturen,” Tagungsband Des 10. Feinbearbeitungskolloqiums Braunschweig, Braunchweig, Germany, Oct. 7–9, pp. 7–24.
Feng, J. , Chen, P. , and Ni, J. , 2012, “Prediction of Surface Generation in Microgrinding of Ceramic Materials by Coupled Trajectory and Finite Element Analysis,” Finite Elem. Anal. Des., 57, pp. 67–80. [CrossRef]
Park, H.-K. , Onikura, H. , Ohnishi, O. , and Sharifuddin, A. , 2010, “Development of Micro-Diamond Tools Through Electroless Composite Plating and Investigation Into Micro-Machining Characteristics,” Precis. Eng., 34(3), pp. 376–386. [CrossRef]
Morgan, C. J. , Vallance, R. R. , and Marsh, E. R. , 2007, “Specific Grinding Energy While Microgrinding Tungsten Carbide With Polycrystalline Diamond Micro Tools,” International Conference on Micromanufacturing, Clemson, SC, Sept. 10–13.
Arrabiyeh, P. A. , Bohley, M. , Ströer, F. , Kirsch, B. , Seewig, J. , and Aurich, J. C. , 2017, “Experimental Analysis for the Use of Sodium Dodecyl Sulfate as a Soluble Metal Cutting Fluid for Micromachining With Electroless-Plated Micropencil Grinding Tools,” Inventions, 2(4), p. 29. [CrossRef]
Setti, D. , Kirsch, B. , Arrabiyeh, P. A. , and Aurich, J. C. , 2018, “Visualization of Geometrical Deviations in Micro Grinding by Kinematic Simulations,” ASME Paper No. MSEC2018-6576.
Masuzawa, T. , 2000, “State of the Art of Micro Machining,” CIRP Ann., 49(2), pp. 473–488. [CrossRef]
Haefeli Diamantwerkzeufabrik AG, 2017, “Product Catalog for Internal Grinding,” Haefeli Diamantwerkzeufabrik AG, Zurich, Switzerland.
Zhang, Q. , 2004, “Study on Technology of Ultrasonic Vibration Aided Electrical Discharge Machining in Gas,” J. Mater. Process. Technol., 149, pp. 640–644.
Mahendran, S. , Devarajan, R. , Nagarajan, T. , and Majdi, A. , 2010, “A Review of Micro-EDM,” International Multiconference of Engineers and Computer Scientists (IMECS), College Station, TX, June 18–22. http://www.iaeng.org/publication/IMECS2010/IMECS2010_pp981-986.pdf
DiBitonto, D. D. , Eubank, P. T. , Patel, M. R. , and Barrufet, M. A. , 1989, “Theoretical Models of the Electrical Discharge Machining Process—Part I: A Simple Cathode Erosion Model,” J. Appl. Phys., 66(9), pp. 4095–4103. [CrossRef]
Fonda, P. , Wang, Z. , Yamazaki, K. , and Akutsu, Y. , 2008, “A Fundamental Study on Ti–6Al–4V's Thermal and Electrical Properties and Their Relation to EDM Productivity,” J. Mater. Process. Technol., 202(1–3), pp. 583–589. [CrossRef]
Mohri, N. , Fukuzawa, Y. , Tani, T. , Saito, N. , and Furutani, K. , 1996, “Assisting Electrode Method for Machining Insulating Ceramics,” CIRP Ann., 45(1), pp. 201–204. [CrossRef]
Mohri, N. , Fukuzawa, Y. , Tani, T. , and Toshio, S. , 2002, “Some Considerations to Machining Characteristics of Insulating Ceramics-Towards Practical Use in Industry,” CIRP Ann., 58(1), pp. 161–164. [CrossRef]
Schubert, A. , Zeidler, H. , Hahn, M. , Hackert-Oschätzchen, M. , and Schneider, J. , 2013, “Micro-EDM Milling of Electrically Nonconducting Zirconia Ceramics,” Procedia CIRP, 6, pp. 297–302. [CrossRef]
Egashira, K. , Hosono, S. , Takemoto, S. , and Masao, Y. , 2011, “Fabrication and Cutting Performance of Cemented Tungsten Carbide Micro-Cutting Tools,” Precis. Eng., 35(4), pp. 547–553. [CrossRef]
Yu, Z. Y. , Zhang, Y. , Li, J. , Luan, J. , Zhao, F. , and Guo, D. , 2009, “High Aspect Ratio Micro-Hole Drilling Aided With Ultrasonic Vibration and Planetary Movement of Electrode by Micro-EDM,” CIRP Ann., 58(1), pp. 213–216. [CrossRef]
Aurich, J. C. , Engmann, J. , Schüler, G. M. , and Walk, M. , 2010, “Micro-EDM-Device for Machining Tungsten Carbide in a Desktop Machine Tool,” Tenth International Conference of the European Society for Precision Engineering and Nanotechnology, Delft, The Netherlands, May 31–June 4, pp. 324–327.
Aurich, J. C. , Engmann, J. , and Walk, M. , 2010, “Zerspanen Mit Mikroschleifstiften: Zylindrische Und Formoptimierte Mikroschaftschleifstifte Bei Der Hartmetallzerspanung—Untersuchung Und Vergleich,” Wt Werkstattstechnik, 100(11/12), pp. 832–836.
DIN, 1991, “ Hard metals; Vickers Hardness Test,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 3878.
Aurich, J. C. , Reichenbach, I. G. , and Schüler, G. M. , 2012, “Manufacture and Application of Ultra-Small Micro End Mills,” CIRP Ann., 61(1), pp. 83–86. [CrossRef]
Patel, M. R. , Barrufet, M. A. , Eubank, P. T. , and DiBitonto, D. D. , 1989, “Theoretical Models of the Electrical Discharge Machining Process—Part II: The Anode Erosion Model,” J. Appl. Phys., 66(9), pp. 4104–4111. [CrossRef]
Ferreira, J. C. , 2007, “A Study of Die Helical Thread Cavity Surface Finish Made by Cu-W Electrodes With Planetary EDM,” Int. J. Adv. Manuf. Technol., 34(11–12), pp. 1120–1132. [CrossRef]
Ekmekci, B. , 2007, “Residual Stresses and White Layer in Electric Discharge Machining (EDM),” Appl. Surf. Sci., 253(23), pp. 9234–9240. [CrossRef]
Luo, Y. F. , 1998, “An Evaluation of Spark Mobility in Electrical Discharge Machining,” IEEE Trans. Plasma Sci., 26(3), pp. 1010–1016. [CrossRef]
Walk, M. , 2016, Integriertes Desktopmaschinensystem Für Die Herstellung Und Anwendung Ultrakleiner Mikroschleifwerkzeuge, Technische Universität, Kaiserslautern, Germany.
Tanabe, R. , Ito, Y. , Mohri, N. , and Masuzawa, T. , 2016, “Development of Peeling Tools With Sub-50 μm Cores by Zinc Electroplating and Their Application to Micro-EDM,” CIRP Ann., 65(1), pp. 221–224. [CrossRef]
Shabgard, M. , Kakolvand, H. , Seyedzavvar, M. , and Shotorbani, R. M. , 2011, “Ultrasonic Assisted EDM: Effect of the Workpiece Vibration in the Machining Characteristics of FW4 Welded Metal,” Front. Mech. Eng., 43(13), pp. 419–428.
Bamberg, E. , and Heamawatanachai, S. , 2009, “Orbital Electrode Actuation to Improve Efficiency of Drilling Micro-Holes by Micro-EDM,” J. Mater. Process. Technol., 209(4), pp. 1826–1834. [CrossRef]
Schmidt, K. , 2006, Mikrofräswerkzeuge Aus Hartmetall, University of Kaiserslautern, Kaiserslautern, Germany.
DIN, 2006, “Metallic Materials—Vickers Hardness Test—Part 1: Test Method,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 6507-1:2006.
Zeidler, H. , 2012, Schwingungsunterstützte Mikro-Funkenerosion, Verlag Wissenschaftliche Scripten, Auerbach, Germany.

Figures

Grahic Jump Location
Fig. 2

Manufacturing process for MPGTs with solution components [9]

Grahic Jump Location
Fig. 1

Micropencil grinding tool with grit size 3–6 μm and a microstructure machined with this MPGT

Grahic Jump Location
Fig. 3

Principle of μEDM according to Ref. [32]

Grahic Jump Location
Fig. 6

(a) Pointy micro-electrode form preprocess and (b) micro-electrode post process

Grahic Jump Location
Fig. 5

Micro-electrode forms

Grahic Jump Location
Fig. 9

Substrate with cavity

Grahic Jump Location
Fig. 7

Micro-electrical discharge machining parameter schematic

Grahic Jump Location
Fig. 8

Diagram showing influence of (a) voltage on spark gap (b) pulse duration on spark gap

Grahic Jump Location
Fig. 4

Micro-electrical discharge machining system

Grahic Jump Location
Fig. 10

Ultra precision four-axes machine tool [6]

Grahic Jump Location
Fig. 11

Micropencil grinding tools with cavities

Grahic Jump Location
Fig. 12

Microgrinding process

Grahic Jump Location
Fig. 13

Cutouts of microstructures and the MPGTs used to machine them: (a) process with regular MPGT, (b) process with inclined MPGT (2 deg), and (c) process with optimized MPGT

Grahic Jump Location
Fig. 14

(a) Optimized MPGT durability test and (b) microstructure in the shape of a triangle with MPGT postmachining

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In