Research Papers

Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing

[+] Author and Article Information
Mohamad Mahmoudi

Industrial and Systems Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: mahmoudi@tamu.edu

Ahmed Aziz Ezzat

Industrial and Systems Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: aa.ezzat@tamu.edu

Alaa Elwany

Industrial and Systems Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: elwany@tamu.edu

1Corresponding author.

Manuscript received February 15, 2018; final manuscript received November 19, 2018; published online January 17, 2019. Assoc. Editor: Sam Anand.

J. Manuf. Sci. Eng 141(3), 031002 (Jan 17, 2019) (13 pages) Paper No: MANU-18-1094; doi: 10.1115/1.4042108 History: Received February 15, 2018; Revised November 19, 2018

A growing research trend in additive manufacturing (AM) calls for layerwise anomaly detection as a step toward enabling real-time process control, in contrast to ex situ or postprocess testing and characterization. We propose a method for layerwise anomaly detection during laser powder-bed fusion (L-PBF) metal AM. The method uses high-speed thermal imaging to capture melt pool temperature and is composed of the following four-step anomaly detection procedure: (1) using the captured thermal images, a process signature of a just-fabricated layer is generated. Next, a signature difference is obtained by subtracting the process signature of that particular layer from a prespecified reference signature, (2) a screening step selects potential regions of interests (ROIs) within the layer that are likely to contain process anomalies, hence reducing the computational burden associated with analyzing the full layer data, (3) the spatial dependence of these ROIs is modeled using a Gaussian process model, and then pixels with statistically significant deviations are flagged, and (4) using the quantity and the spatial pattern of the flagged pixels as predictors, a classifier is trained and implemented to determine whether the process is in- or out-of-control. We validate the proposed method using a case study on a commercial L-PBF system custom-instrumented with a dual-wavelength imaging pyrometer for capturing the thermal images during fabrication.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Tapia, G. , and Elwany, A. , 2014, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” ASME J. Manuf. Sci. Eng., 136(6), p. 060801. [CrossRef]
Tolosa, I. , Garciandía, F. , Zubiri, F. , Zapirain, F. , and Esnaola, A. , 2010, “Study of Mechanical Properties of AISI 316 Stainless Steel Processed by ‘Selective Laser Melting’, Following Different Manufacturing Strategies,” Int. J. Adv. Manuf. Technol., 51(5–8), pp. 639–647. [CrossRef]
Garibaldi, M. , Ashcroft, I. , Simonelli, M. , and Hague, R. , 2016, “Metallurgy of High-Silicon Steel Parts Produced Using Selective Laser Melting,” Acta Mater., 110, pp. 207–216. [CrossRef]
Mahmoudi, M. , Elwany, A. , Yadollahi, A. , Thompson, S. M. , Bian, L. , and Shamsaei, N. , 2017, “Mechanical Properties and Microstructural Characterization of Selective Laser Melted 17-4 PH Stainless Steel,” Rapid Prototyping J., 23(2), pp. 280–294. [CrossRef]
Facchini, L. , Vicente, N. , Lonardelli, I. , Magalini, E. , Robotti, P. , and Molinari, A. , 2010, “Metastable Austenite in 17–4 Precipitation-Hardening Stainless Steel Produced by Selective Laser Melting,” Adv. Eng. Mater., 12(3), pp. 184–188. [CrossRef]
Masoomi, M. , Shamsaei, N. , Winholtz, R. A. , Milner, J. , Gnäupel-Herold, T. , Elwany, A. , Mahmoudi, M. , and Thompson, S. M. , 2017, “Residual Stress Measurements Via Neutron Diffraction of Additive Manufactured Stainless Steel 17-4 PH,” Data Brief, 13, pp. 408–414.
Yadollahi, A. , Shamsaei, N. , Thompson, S. M. , Elwany, A. , Bian, L. , and Mahmoudi, M. , 2015, “Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel,” 26th International Solid Freeform Fabrication Symposium, Austin, TX, Aug. 10–12, pp. 721–731.
Li, S. , Hassanin, H. , Attallah, M. M. , Adkins, N. J. , and Essa, K. , 2016, “The Development of TiNi-Based Negative Poisson's Ratio Structure Using Selective Laser Melting,” Acta Mater., 105, pp. 75–83. [CrossRef]
Murr, L. , Quinones, S. , Gaytan, S. , Lopez, M. , Rodela, A. , Martinez, E. , Hernandez, D. , Martinez, E. , Medina, F. , and Wicker, R. , 2009, “Microstructure and Mechanical Behavior of Ti–6Al–4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications,” J. Mech. Behav. Biomed. Mater., 2(1), pp. 20–32. [CrossRef] [PubMed]
El-Desouky, A. , Carter, M. , Mahmoudi, M. , Elwany, A. , and LeBlanc, S. , 2017, “Influences of Energy Density on Microstructure and Consolidation of Selective Laser Melted Bismuth Telluride Thermoelectric Powder,” J. Manuf. Process., 25, pp. 411–417. [CrossRef]
Jia, Q. , and Gu, D. , 2014, “Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties,” J. Alloys Compd., 585, pp. 713–721. [CrossRef]
Franco, B. , Ma, J. , Loveall, B. , Tapia, G. , Karayagiz, K. , Liu, J. , Elwany, A. , Arroyave, R. , and Karaman, I. , 2017, “A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts,” Sci. Rep., 7(1), p. 3604. https://www.nature.com/articles/s41598-017-03499-x
Ma, J. , Franco, B. , Tapia, G. , Karayagiz, K. , Johnson, L. , Liu, J. , Arroyave, R. , Karaman, I. , and Elwany, A. , 2017, “Spatial Control of Functional Response in 4D-Printed Active Metallic Structures,” Sci. Rep., 7(1), p. 46707. https://www.nature.com/articles/srep46707
Tapia, G. , Johnson, L. , Franco, B. , Karayagiz, K. , Ma, J. , Arroyave, R. , Karaman, I. , and Elwany, A. , 2017, “Bayesian Calibration and Uncertainty Quantification for a Physics-Based Precipitation Model of Nickel–Titanium Shape-Memory Alloys,” ASME J. Manuf. Sci. Eng., 139(7), p. 071002. [CrossRef]
Elahinia, M. , Moghaddam, N. S. , Andani, M. T. , Amerinatanzi, A. , Bimber, B. A. , and Hamilton, R. F. , 2016, “Fabrication of NiTi Through Additive Manufacturing: A Review,” Prog. Mater. Sci., 83, pp. 630–663. [CrossRef]
Bormann, T. , Schumacher, R. , Müller, B. , Mertmann, M. , and de Wild, M. , 2012, “Tailoring Selective Laser Melting Process Parameters for NiTi Implants,” J. Mater. Eng. Perform., 21(12), pp. 2519–2524. [CrossRef]
Haberland, C. , Elahinia, M. , Walker, J. M. , Meier, H. , and Frenzel, J. , 2014, “On the Development of High Quality NiTi Shape Memory and Pseudoelastic Parts by Additive Manufacturing,” Smart Mater. Struct., 23(10), p. 104002. [CrossRef]
Walker, J. M. , Haberland, C. , Taheri Andani, M. , Karaca, H. E. , Dean, D. , and Elahinia, M. , 2016, “Process Development and Characterization of Additively Manufactured Nickel–Titanium Shape Memory Parts,” J. Intell. Mater. Syst. Struct., 27(19), pp. 2653–2660. [CrossRef]
Parthasarathy, J. , Starly, B. , and Raman, S. , 2011, “A Design for the Additive Manufacture of Functionally Graded Porous Structures With Tailored Mechanical Properties for Biomedical Applications,” J. Manuf. Process., 13(2), pp. 160–170. [CrossRef]
Muller, P. , Mognol, P. , and Hascoet, J.-Y. , 2013, “Modeling and Control of a Direct Laser Powder Deposition Process for Functionally Graded Materials (FGM) Parts Manufacturing,” J. Mater. Process. Technol., 213(5), pp. 685–692. [CrossRef]
Kempen, K. , Thijs, L. , Vrancken, B. , Buls, S. , Van Humbeeck, J. , and Kruth, J. , 2013, “Producing Crack-Free, High Density M2 HSS Parts by Selective Laser Melting: Pre-Heating the Baseplate,” 24th International Solid Freeform Fabrication Symposium. (SFF), Austin, TX, Aug. 12–14, pp. 131–139. http://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-10-Kempen.pdf
Sames, W. J. , List, F. , Pannala, S. , Dehoff, R. R. , and Babu, S. S. , 2016, “The Metallurgy and Processing Science of Metal Additive Manufacturing,” Int. Mater. Rev., 61(5), pp. 315–360. [CrossRef]
Gu, H. , Gong, H. , Pal, D. , Rafi, K. , Starr, T. , and Stucker, B. , 2013, “Influences of Energy Density on Porosity and Microstructure of Selective Laser Melted 17-4PH Stainless Steel,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 12–14, p. 474. https://www.researchgate.net/publication/280114488_Influences_of_Energy_Density_on_Porosity_and_Microstructure_of_Selective_Laser_Melted_17-4PH_Stainless_Steel
Kleszczynski, S. , Zur Jacobsmühlen, J. , Sehrt, J. , and Witt, G. , 2012, “Error Detection in Laser Beam Melting Systems by High Resolution Imaging,” 23rd Annual International Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 6–8, pp. 975–987. http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-74-Kleszczynski.pdf
Bertoli, U. S. , Wolfer, A. J. , Matthews, M. J. , Delplanque, J.-P. R. , and Schoenung, J. M. , 2017, “On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting,” Mater. Des., 113, pp. 331–340. [CrossRef]
Averyanova, M. , Cicala, E. , Bertrand, P. , and Grevey, D. , 2012, “Experimental Design Approach to Optimize Selective Laser Melting of Martensitic 17-4 PH Powder—Part I: Single Laser Tracks and First Layer,” Rapid Prototyping J., 18(1), pp. 28–37. [CrossRef]
King, W. E. , Barth, H. D. , Castillo, V. M. , Gallegos, G. F. , Gibbs, J. W. , Hahn, D. E. , Kamath, C. , and Rubenchik, A. M. , 2014, “Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing,” J. Mater. Process. Technol., 214(12), pp. 2915–2925. [CrossRef]
Tapia, G. , Khairallah, S. , Matthews, M. , King, W. E. , and Elwany, A. , 2017, “Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316l Stainless Steel,” Int. J. Adv. Manuf. Technol., 94(9–12), pp. 3591–3603.
Khairallah, S. A. , Anderson, A. T. , Rubenchik, A. , and King, W. E. , 2016, “Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta Mater., 108, pp. 36–45. [CrossRef]
Megahed, M. , Mindt, H.-W. , N'Dri, N. , Duan, H. , and Desmaison, O. , 2016, “Metal Additive-Manufacturing Process and Residual Stress Modeling,” Integr. Mater. Manuf. Innovation, 5(1), p. 4. [CrossRef]
Zhang, D. , Cai, Q. , Liu, J. , Zhang, L. , and Li, R. , 2010, “Select Laser Melting of W–Ni–Fe Powders: Simulation and Experimental Study,” Int. J. Adv. Manuf. Technol., 51(5–8), pp. 649–658. [CrossRef]
Masoomi, M. , Thompson, S. M. , and Shamsaei, N. , 2017, “Laser Powder Bed Fusion of Ti–6Al–4V Parts: Thermal Modeling and Mechanical Implications,” Int. J. Mach. Tools Manuf., 118–119, pp. 73–90. [CrossRef]
Mani, M. , Feng, S. , Lane, B. , Donmez, A. , Moylan, S. , and Fesperman, R. , 2015, “Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes,” U. S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, Report No. 8036 https://www.nist.gov/publications/measurement-science-needs-real-time-control-additive-manufacturing-powder-bed-fusion.
Grasso, M. , and Colosimo, B. M. , 2017, “Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review,” Meas. Sci. Technol., 28(4), p. 044005. [CrossRef]
Kerwien, S. , Collings, S. , Liou, F. , and Bytnar, M. , 2013, “Measurement Science Roadmap for Metal-Based Additive Manufacturing,” National Institute of Standards and Technology, Gaithersburg, MD, Report. https://www.nist.gov/sites/default/files/documents/el/isd/NISTAdd_Mfg_Report_FINAL-2.pdf
Rao, P. K. , Liu, J. P. , Roberson, D. , Kong, Z. J. , and Williams, C. , 2015, “Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors,” ASME J. Manuf. Sci. Eng., 137(6), p. 061007. [CrossRef]
Kousiatza, C. , and Karalekas, D. , 2016, “In-Situ Monitoring of Strain and Temperature Distributions During Fused Deposition Modeling Process,” Mater. Des., 97, pp. 400–406. [CrossRef]
Bastani, K. , Rao, P. K. , and Kong, Z. , 2016, “An Online Sparse Estimation-Based Classification Approach for Real-Time Monitoring in Advanced Manufacturing Processes From Heterogeneous Sensor Data,” IIE Trans., 48(7), pp. 579–598. [CrossRef]
Khanzadeh, M. , Chowdhury, S. , Bian, L. , and Tschopp, M. A. , 2017, “A Methodology for Predicting Porosity From Thermal Imaging of Melt Pools in Additive Manufacturing Thin Wall Sections,” ASME Paper No. MSEC2017-2909.
Abdelrahman, M. , Reutzel, E. W. , Nassar, A. R. , and Starr, T. L. , 2017, “Flaw Detection in Powder Bed Fusion Using Optical Imaging,” Addit. Manuf., 15, pp. 1–11. [CrossRef]
Aminzadeh, M. , and Kurfess, T. , 2016, “Vision-Based Inspection System for Dimensional Accuracy in Powder-Bed Additive Manufacturing,” ASME Paper No. MSEC2016-8674.
Gong, H. , Rafi, K. , Gu, H. , Starr, T. , and Stucker, B. , 2014, “Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes,” Addit. Manuf., 1–4, pp. 87–98. [CrossRef]
Gong, H. , Rafi, K. , Gu, H. , Ram, G. J. , Starr, T. , and Stucker, B. , 2015, “Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting,” Mater. Des., 86, pp. 545–554. [CrossRef]
Spears, T. G. , and Gold, S. A. , 2016, “In-Process Sensing in Selective Laser Melting (SLM) Additive Manufacturing,” Integr. Mater. Manuf. Innovation, 5(1), p. 2. [CrossRef]
Everton, S. K. , Hirsch, M. , Stravroulakis, P. , Leach, R. K. , and Clare, A. T. , 2016, “Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing,” Mater. Des., 95, pp. 431–445. [CrossRef]
Kruth, J.-P. , Mercelis, P. , Van Vaerenbergh, J. , and Craeghs, T. , 2007, “Feedback Control of Selective Laser Melting,” Third International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, Sept. 24–29, pp. 521–527. https://core.ac.uk/download/pdf/34389507.pdf
Craeghs, T. , Bechmann, F. , Berumen, S. , and Kruth, J.-P. , 2010, “Feedback Control of Layerwise Laser Melting Using Optical Sensors,” Phys. Procedia, 5, pp. 505–514. [CrossRef]
Berumen, S. , Bechmann, F. , Lindner, S. , Kruth, J.-P. , and Craeghs, T. , 2010, “Quality Control of Laser- and Powder Bed-Based Additive Manufacturing (AM) Technologies,” Phys. Procedia, 5, pp. 617–622. [CrossRef]
Craeghs, T. , Clijsters, S. , Kruth, J.-P. , Bechmann, F. , and Ebert, M.-C. , 2012, “Detection of Process Failures in Layerwise Laser Melting With Optical Process Monitoring,” Phys. Procedia, 39, pp. 753–759. [CrossRef]
Clijsters, S. , Craeghs, T. , Buls, S. , Kempen, K. , and Kruth, J.-P. , 2014, “In Situ Quality Control of the Selective Laser Melting Process Using a High-Speed, Real-Time Melt Pool Monitoring System,” Int. J. Adv. Manuf. Technol., 75(5–8), pp. 1089–1101. [CrossRef]
Krauss, H. , Eschey, C. , and Zaeh, M. , 2012, “Thermography for Monitoring the Selective Laser Melting Process,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 6–8, pp. 999–1014. http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-76-Krauss.pdf
Krauss, H. , Zeugner, T. , and Zaeh, M. F. , 2014, “Layerwise Monitoring of the Selective Laser Melting Process by Thermography,” Phys. Procedia, 56, pp. 64–71. [CrossRef]
Chivel, Y. , and Smurov, I. , 2010, “On-Line Temperature Monitoring in Selective Laser Sintering/Melting,” Phys. Procedia, 5, pp. 515–521. [CrossRef]
Pavlov, M. , Doubenskaia, M. , and Smurov, I. , 2010, “Pyrometric Analysis of Thermal Processes in SLM Technology,” Phys. Procedia, 5, pp. 523–531. [CrossRef]
Doubenskaia, M. , Pavlov, M. , Grigoriev, S. , Tikhonova, E. , and Smurov, I. , 2012, “Comprehensive Optical Monitoring of Selective Laser Melting,” J. Laser Micro/Nanoeng., 7(3), pp. 236–243. http://www.jlps.gr.jp/jlmn/upload/1636e63b04e3c9564a2568d78613db63.pdf
Chivel, Y. , 2013, “Optical In-Process Temperature Monitoring of Selective Laser Melting,” Phys. Procedia, 41, pp. 904–910. [CrossRef]
Doubenskaia, M. , Grigoriev, S. , Zhirnov, I. , and Smurov, I. , 2016, “Parametric Analysis of SLM Using Comprehensive Optical Monitoring,” Rapid Prototyping J., 22(1), pp. 40–50. [CrossRef]
Grasso, M. , Demir, A. , Previtali, B. , and Colosimo, B. , 2018, “In Situ Monitoring of Selective Laser Melting of Zinc Powder Via Infrared Imaging of the Process Plume,” Rob. Comput.-Integr. Manuf., 49, pp. 229–239. [CrossRef]
EOS, 2018, “Eostate Monitoring Suite—Real-Time Monitoring for Industrial 3D Printing,” EOS, accessed Sept. 30, 2018, https://www.eos.info/software/monitoring-software.
Renishaw, 2018, “Infiniam Spectral,” Renishaw, accessed Sept. 30, 2018, http://www.renishaw.com/en/infiniam-spectral--42310
Grasso, M. , Laguzza, V. , Semeraro, Q. , and Colosimo, B. M. , 2017, “In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis,” ASME J. Manuf. Sci. Eng., 139(5), p. 051001. [CrossRef]
Khanzadeh, M. , Rao, P. , Jafari-Marandi, R. , Smith, B. K. , Tschopp, M. A. , and Bian, L. , 2018, “Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts,” ASME J. Manuf. Sci. Eng., 140(3), p. 031011. [CrossRef]
Khanzadeh, M. , Chowdhury, S. , Tschopp, M. A. , Doude, H. R. , Marufuzzaman, M. , and Bian, L. , 2017, “In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes,” IISE Trans. (accepted).
Vaughan, A. , Jun, M. , and Park, C. , 2012, “Statistical Inference and Visualization in Scale-Space for Spatially Dependent Images,” J. Korean Stat. Soc., 41(1), pp. 115–135. [CrossRef]
Fuentes, M. , 2001, “A High Frequency Kriging Approach for Non-Stationary Environmental Processes,” Environmetrics, 12(5), pp. 469–483. [CrossRef]
Michalski, L. , Eckersdorf, K. , and McGhee, J. , 1991, Temperature Measurement, Wiley, Chichester, UK.
Müller, B. , and Renz, U. , 2001, “Development of a Fast Fiber-Optic Two-Color Pyrometer for the Temperature Measurement of Surfaces With Varying Emissivities,” Rev. Sci. Instrum., 72(8), pp. 3366–3374. [CrossRef]
Hijazi, A. , Sachidanandan, S. , Singh, R. , and Madhavan, V. , 2011, “A Calibrated Dual-Wavelength Infrared Thermometry Approach With Non-Greybody Compensation for Machining Temperature Measurements,” Meas. Sci. Technol., 22(2), p. 025106. [CrossRef]
Heigel, J. C. , and Lane, B. M. , 2017, “Measurement of the Melt Pool Length During Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process,” ASME J. Manuf. Sci. Eng., 140(5), pp. 051012.
Verhaeghe, F. , Craeghs, T. , Heulens, J. , and Pandelaers, L. , 2009, “A Pragmatic Model for Selective Laser Melting With Evaporation,” Acta Mater., 57(20), pp. 6006–6012. [CrossRef]
Loh, L.-E. , Chua, C.-K. , Yeong, W.-Y. , Song, J. , Mapar, M. , Sing, S.-L. , Liu, Z.-H. , and Zhang, D.-Q. , 2015, “Numerical Investigation and an Effective Modelling on the Selective Laser Melting (SLM) Process With Aluminium Alloy 6061,” Int. J. Heat Mass Transfer, 80, pp. 288–300. [CrossRef]
Masmoudi, A. , Bolot, R. , and Coddet, C. , 2015, “Investigation of the Laser–Powder–Atmosphere Interaction Zone During the Selective Laser Melting Process,” J. Mater. Process. Technol., 225, pp. 122–132. [CrossRef]
Qiu, C. , Panwisawas, C. , Ward, M. , Basoalto, H. C. , Brooks, J. W. , and Attallah, M. M. , 2015, “On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting,” Acta Mater., 96, pp. 72–79. [CrossRef]
Aboutaleb, A. M. , Bian, L. , Elwany, A. , Shamsaei, N. , Thompson, S. M. , and Tapia, G. , 2017, “Accelerated Process Optimization for Laser-Based Additive Manufacturing by Leveraging Similar Prior Studies,” IISE Trans., 49(1), pp. 31–44. [CrossRef]
Gonzalez, R. C. , and Woods, R. E. , 2008, Digital Image Processing, Prentice Hall, Upper Saddle River, NJ.
Rasmussen, C. E. , and Williams, C. K. , 2006, Gaussian Processes for Machine Learning, Vol. 1, MIT Press, Cambridge, MA.
Chaudhuri, P. , and Marron, J. S. , 1999, “Sizer for Exploration of Structures in Curves,” J. Am. Stat. Assoc., 94(447), pp. 807–823. [CrossRef]
Godtliebsen, F. , Marron, J. S. , and Chaudhuri, P. , 2004, “Statistical Significance of Features in Digital Images,” Image Vision Comput., 22(13), pp. 1093–1104. [CrossRef]
Tarjan, R. , 1972, “Depth-First Search and Linear Graph Algorithms,” SIAM J. Comput., 1(2), pp. 146–160. [CrossRef]
Suriano, S. , Wang, H. , Shao, C. , Hu, S. J. , and Sekhar, P. , 2015, “Progressive Measurement and Monitoring for Multi-Resolution Data in Surface Manufacturing Considering Spatial and Cross Correlations,” IIE Trans., 47(10), pp. 1033–1052. [CrossRef]
Hastie, T. , Tibshirani, R. , and Friedman, J. , 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, New York.
Toeppel, T. , Schumann, P. , Ebert, M.-C. , Bokkes, T. , Funke, K. , Werner, M. , Zeulner, F. , Bechmann, F. , and Herzog, F. , 2016, “3D Analysis in Laser Beam Melting Based on Real-Time Process Monitoring,” Materials Science and Technology Conference, Salt Lake City, UT, Oct. 23–27, pp. 123–132. http://publica.fraunhofer.de/documents/N-421440.html
Elkan, C. , 2001, “The Foundations of Cost-Sensitive Learning,” International Joint Conference on Artificial Intelligence (IJCAI'01), Seattle, WA, Aug. 4–10, Vol. 17, pp. 973–978. http://web.cs.iastate.edu/~honavar/elkan.pdf


Grahic Jump Location
Fig. 1

Representative melt pool thermal image captured during laser melting

Grahic Jump Location
Fig. 2

Process of generating a thermal signature for a rectangular layer: (a) the very first melt pool image captured can be seen at the bottom right corner, (b) more melt pool images are combined as the laser progresses and scans the rest of the rectangle; the arrows schematically show the laser scan path, and (c) the complete thermal signature of the layer

Grahic Jump Location
Fig. 3

(a) Grayscale image for a sample rectangular layer, (b) the binary image with the islands detected after thresholding indicating possible anomalies, and (c) ROIs positioned at the centers of the island clusters

Grahic Jump Location
Fig. 7

Regions of interests detected in the screening step corresponding to the thermal signature of the faulty layer 151

Grahic Jump Location
Fig. 6

Thermal signature corresponding to layer 151 with the cavity in the center

Grahic Jump Location
Fig. 5

(a) Schematic of the prism showing the cavity and (b) as-printed prism

Grahic Jump Location
Fig. 8

Top row: SIZER output for a faulty ROI, (a) spatial detection and (b) independent detection. Bottom row: SIZER output for a faultless ROI, (c) spatial detection, and (d) independent detection.

Grahic Jump Location
Fig. 9

ROC for LR classifier with spatial detection (solid red line), with independent detection (solid blue line). Dashed green line corresponds to random guess.

Grahic Jump Location
Fig. 4

The pyrometer used for temperature measurement



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In