0
Research Papers

A State-of-the-Art Review on Solid-State Metal Joining

[+] Author and Article Information
Wayne Cai

GM Global R&D Center,
Warren, MI 48090-9055

Glenn Daehn, Anupam Vivek

The Ohio State University,
Columbus, OH 43210

Jingjing Li, Haris Khan

Department of Industrial and Manufacturing
Engineering,
310 Leonhard Building,
The Pennsylvania State University,
University Park, PA 16802

Rajiv S. Mishra

Center for Friction Stir Processing,
Department of Materials Science and
Engineering,
Advanced Materials and Manufacturing
Processes Institute,
University of North Texas,
Denton, TX 76203

Mageshwari Komarasamy

Center for Friction Stir Processing,
Department of Materials Science and
Engineering,
University of North Texas,
Denton, TX 76203

Manuscript received June 7, 2018; final manuscript received August 8, 2018; published online January 29, 2019. Editor: Y. Lawrence Yao.

J. Manuf. Sci. Eng 141(3), 031012 (Jan 29, 2019) (35 pages) Paper No: MANU-18-1431; doi: 10.1115/1.4041182 History: Received June 07, 2018; Revised August 08, 2018

This paper aims at providing a state-of-the-art review of an increasingly important class of joining technologies called solid-state (SS) welding, as compared to more conventional fusion welding. Among many other advantages such as low heat input, SS processes are particularly suitable for dissimilar materials joining. In this paper, major SS joining technologies such as the linear and rotary friction welding (RFW), friction stir welding (FSW), ultrasonic welding, impact welding, are reviewed, as well as diffusion and roll bonding (RB). For each technology, the joining process is first depicted, followed by the process characterization, modeling and simulation, monitoring/diagnostics/ nondestructive evaluation (NDE), and ended with concluding remarks. A discussion section is provided after reviewing all the technologies on the common critical factors that affect the SS processes. Finally, the future outlook is presented.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

TWI, 2018, “Friction Stir Welding of Airframe Structures,” The Welding Institute, Cambridge, UK, accessed, July 29, 2018, http://www.twi-global.com/industries/aerospace/joining-of-airframe-structures/friction-stir-welding-of-airframe-structures/
Ashby, M. , 2010, Materials Selection in Mechanical Design, 4th ed., Butterworth and Heinemann, Oxford, UK.
LeBozec, N. , LeGac, A. , and Thierry, N. , 2012, “Corrosion Performance and Mechanical Properties of Joined Automotive Materials,” Mater. Corros., 63(5), pp. 408–415. [CrossRef]
Bevington, J. H. , 1891, “Spinning Tubes,” U.S. Patent No. 444721.
Li, W. , Vairis, A. , Preuss, M. , and Ma, T. , 2016, “Linear and Rotary Friction Welding Review,” Int. Mater. Rev., 61(2), pp. 71–100. [CrossRef]
Snyder, E. A. , 1994, “Friction Welder Having a Drive Which Produces Orbital Motion,” Hydroacoustics Inc., Rochester, NY, U. S. Patent No. EP 0504494 A3. https://patents.google.com/patent/EP0504494A3/un
TWI, 2018, “What is Friction Stud Welding?,” The Welding Institute, Cambridge, UK, http://www.twi-global.com/technical-knowledge/faqs/faq-what-is-friction-stud-welding/
Thomas, W. , Nicholas, E. , and Jones, S. , “Forming Metallic Composite Materials by Urging Base Materials Together Under Shear,” Welding Institute England, Cambridge, UK, U.S. Patent No. 5262123A. https://patents.google.com/patent/US5262123A/en
Vicharapu, B. , Kanan, L. F. , Clarke, T. , and De, A. , 2017, “An Investigation on Friction Hydro-Pillar Processing,” Sci. Technol. Weld. Joining, 22(7), pp. 555–561. [CrossRef]
Maalekian, M. , 2007, “Friction Welding—Critical Assessment of Literature,” Sci. Technol. Weld. Joining, 12(8), pp. 738–759. [CrossRef]
Li, W. , and Wang, F. , 2011, “Modeling of Continuous Drive Friction Welding of Mild Steel,” Mater. Sci. Eng. A, 528(18), pp. 5921–5926. [CrossRef]
Kallee, S. , and Nicholas, D. , 1999, “Friction and Forge Welding Processes for the Automotive Industry,” SAE Technical Paper No. 0148-7191.
Bhamji, I. , Preuss, M. , Threadgill, P. L. , and Addison, A. C. , 2011, “Solid State Joining of Metals by Linear Friction Welding: A Literature Review,” Materials Science and Technology, 27(1), pp. 2–12. [CrossRef]
Wanjara, P. , and Jahazi, M. , 2005, “Linear Friction Welding of Ti-6Al-4V: Processing, Microstructure, and Mechanical-Property Interrelationships,” Metall. Mater. Trans. A, 36(8), pp. 2149–2164. [CrossRef]
Johnson, S. A., 2013, “Linear Friction Welding Method,” Apci, LLC, Saint Louis, MO, U.S. Patent No. WO2013085942A1. https://patents.google.com/patent/WO2013085942A1/en
Wang, F. F. , Li, W. Y. , Li, J. L. , and Vairis, A. , 2014, “Process Parameter Analysis of Inertia Friction Welding Nickel-Based Superalloy,” Int. J. Adv. Manuf. Technol., 71(9–12), pp. 1909–1918. [CrossRef]
Vairis, A. , and Frost, M. , 1999, “On the Extrusion Stage of Linear Friction Welding of Ti-6Al-4V,” Mater. Sci. Eng. A, 271(1–2), pp. 477–484. [CrossRef]
Vairis, A. , and Frost, M. , 1998, “High-Frequency Linear Friction Welding of a Titanium Alloy,” Wear, 217(1), pp. 117–131. [CrossRef]
Threadgill, P. L. , 2007, “Terminology in Friction Stir Welding,” Sci. Technol. Weld. Joining, 12(4), pp. 357–360. [CrossRef]
Karadge, M. , Preuss, M. , Lovell, C. , Withers, P. J. , and Bray, S. , 2007, “Texture Development in Ti-6Al-4V Linear Friction Welds,” Mater. Sci. Eng. A, 459(1–2), pp. 182–191. [CrossRef]
Romero, J. , Attallah, M. M. , Preuss, M. , Karadge, M. , and Bray, S. , 2009, “Effect of the Forging Pressure on the Microstructure and Residual Stress Development in Ti-6Al-4V Linear Friction Welds,” Acta Mater., 57(18), pp. 5582–5592. [CrossRef]
Dalgaard, E. , Wanjara, P. , Trigo, G. , Jahazi, M. , Comeau, G. , and Jonas, J. J. , 2011, “Linear Friction Welding of Al-Cu—Part 2: Interfacial Characteristics,” Can. Metall. Q, 50(4), pp. 360–370. [CrossRef]
Li, W. Y. , Ma, T. J. , Zhang, Y. , Xu, Q. Z. , Li, J. L. , Yang, S. Q. , and Liao, H. L. , 2008, “Microstructure Characterization and Mechanical Properties of Linear Friction Welding Ti-6Al-4V Alloy,” Adv. Eng. Mater., 10(1–2), pp. 89–92. [CrossRef]
Preuss, M. , Fonseca, J. Q. , Steuwer, A. , Wang, L. , Withers, P. J. , and Bray, S. , 2004, “Residual Stresses in Linear Friction Welded IMI550,” J. Neutron Res, 12(1–3), pp. 165–173. [CrossRef]
Damodaram, R. , Raman, S. G. S. , and Rao, K. P. , 2013, “Microstructure and Mechanical Properties of Friction Welded Alloy 718,” Mater. Sci. Eng. A, 560, pp. 781–786. [CrossRef]
Ma, T. J. , Li, W. Y. , Xu, Q. Z. , Zhang, Y. , Li, J. L. , Yang, S. Q. , and Liao, H. L. , 2007, “Microstructure Evolution and Mechanical Properties of Linear Friction Welded 45 Steel Joint,” Adv. Eng. Mater., 9(8), pp. 703–707. [CrossRef]
Uday, M. B. , Ahmad Fauzi, M. N. , Zuhailawati, H. , and Ismail, A. B. , 2010, “Advances in Friction Welding Process: A Review,” Sci. Technol. Weld. Joining, 15(7), pp. 534–558. [CrossRef]
Arivazhagan, N. , Singh, S. , Prakash, S. , and Reddy, G. M. , 2008, “An Assessment of Hardness, Impact Strength, and Hot Corrosion Behavior of Friction-Welded Dissimilar Weldments Between AISI 4140 and AISI 304,” Int. J. Adv. Manuf. Technol., 39(7–8), pp. 679–689. [CrossRef]
Hazra, M. , Rao, K. S. , and Reddy, G. M. , 2014, “Friction Welding of a Nickel-Free High Nitrogen Steel: Influence of Forge Force on Microstructure, Mechanical Properties and Pitting Corrosion Resistance,” J. Mater. Res. Technol., 3(1), pp. 90–100. [CrossRef]
Astarita, A. , Curioni, M. , Squillace, A. , Zhou, X. , Bellucci, F. , Thompson, G. E. , and Beamish, K. A. , 2015, “Corrosion Behavior of Stainless Steel-Titanium Alloy Linear Friction Welded Joints: Galvanic Coupling,” Mater. Corros., 66(2), pp. 111–117. [CrossRef]
Lee, W. B. , Bang, K. S. , and Jung, S.-B. , 2005, “Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints During Annealing,” J. Alloys Compd., 390(1–2), pp. 212–219. [CrossRef]
Healy, J. J. , McMullan, D. J. , and Bahrani, A. S. , 1976, “Analysis of Frictional Phenomena in Friction Welding of Mild Steel,” Wear, 37(2), pp. 265–278. [CrossRef]
Sluzalec, A. , 1990, “Thermal Effects in Friction Welding,” Int. J. Mech. Sci., 32(6), pp. 467–478. [CrossRef]
Maalekian, M. , Kozeschnik, E. , Brantner, H. P. , and Cerjak, H. , 2008, “Comparative Analysis of Heat Generation in Friction Welding of Steel Bars,” Acta Mater., 56(12), pp. 2843–2855. [CrossRef]
Pinheiro, G. A. , Olea, C. A. , dos Santos, J. F. , and Kainer, K. U. , 2007, “Microstructural and Mechanical Behavior of Friction Welds in a High Creep Resistance Magnesium Alloy,” Adv. Eng. Mater., 9(9), p. 757. [CrossRef]
Ola , O. T. , Ojo , O. A. , Wanjara , P. , and Chaturvedi , and M. C. , 2011, “Crack-Free 2474 Welding of in 738 by Linear Friction Welding,” Adv. Mater. Res., 278, pp. 446–453. [CrossRef]
BS, 2000, “Welding. Friction Welding of Metallic Materials, British Standards Institution,” International Organization for Standardization (ISO), Switzerland, Standard No. BS EN 15620:2000
Thomas , W. M. , Nicholas , E. D. , Needham , J. C. , Murch , M. G. , Temple-Smith , P. , and Dawes , C. J. , 1995, “Friction Welding,” Welding Institute England, Cambridge, UK, U.S. Patent No. 5,460,317A.
Mishra , R. S. , De , P. S. , and Kumar , N. , 2014, Friction Stir Welding and Processing: Science and Engineering, Springer, Switzerland.
Hovanski , Y. , Grant , G. J. , Jana , S. , and Mattlin , K. F. , 2013, “Friction Stir Welding Tool and Process for Welding Dissimilar Materials,” Battelle Memorial Institute Inc., Columbus, OH, U.S. Patent No. 8434661B2.
Colligan , K. , 1999, “Material Flow Behavior During Friction Stir Welding of Aluminum,” Weld. J. Res. Suppl., 78(7), pp. 229s–237s
Guerra, M. , Schmidt, C. , McClure, J. C. , Murr, L. E. , and Nunes, A. C. , 2002, “Flow Patterns During Friction Stir Welding,” Mater. Charact., 49(2), pp. 95–101. [CrossRef]
Mofid, M. A. , Abdollah-zadeh, A. , and Hakan Gür, C. , 2014, “Investigating the Formation of Intermetallic Compounds During Friction Stir Welding of Magnesium Alloy to Aluminum Alloy in Air and Under Liquid Nitrogen,” Int. J. Adv. Manuf. Technol., 71(5–8)pp, pp. 1493–1499. [CrossRef]
Jiang, W. H. , and Kovacevic, R. , 2004, “Feasibility Study of Friction Stir Welding of 6061-T6 Aluminium Alloy With AISI 1018 Steel,” Proc. Inst. Mech. Eng. B, 218(10), pp. 1323–1331. [CrossRef]
Chen, C. M. , and Kovacevic, R. , 2004, “Joining of Al 6061 Alloy to AISI 1018 Steel by Combined Effects of Fusion and Solid-State Welding,” Int. J. Mach. Tools Manuf., 44(11), pp. 1205–1214. [CrossRef]
Firouzdor, V. , and Kou, S. , 2010, “Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed,” Metall. Mater. Trans. A, 41(11), pp. 2914–2935. [CrossRef]
Galvão, I. , Leitão, C. , Loureiro, A. , and Rodrigues, D. M. , 2012, “Study of the Welding Conditions During Similar and Dissimilar Aluminium and Copper Welding Based on Torque Sensitivity Analysis,” Mater. Des., 42, pp. 259–264. [CrossRef]
Kimapong, K. , and Watanabe, T. , 2004, “Friction Stir Welding of Aluminum Alloy to Steel,” Weld. J., 83, pp. 277S–282S.
Bang, K. S. , Lee, K. J. , Bang, H. S. , and Bang, H. S. , 2011, “Interfacial Microstructure and Mechanical Properties of Dissimilar Friction Stir Welds Between 6061-T6 Aluminum and Ti-6%Al-4%V Alloys,” Mater. Trans., 52(5), pp. 974–978. [CrossRef]
Schneider, C. , Weinberger, T. , Inoue, J. , Koseki, T. , and Enzinger, N. , 2011, “Characterisation of Interface of Steel/Magnesium FSW,” Sci. Technol. Weld. Joining, 16(1), pp. 100–107. [CrossRef]
Liu, X. , Lan, S. , and Ni, J. , 2014, “Analysis of Process Parameters Effects on Friction Stir Welding of Dissimilar Aluminum Alloy to Advanced High Strength Steel,” Mater. Des., 59, pp. 50–62. [CrossRef]
Ramachandran, K. K. , Murugan, N. , and Kumar, S. , 2015, “Effect of Tool Axis Offset and Geometry of Tool Pin Profile on the Characteristics of Friction Stir Welded Dissimilar Joints of Aluminum Alloy AA5052 and HSLA Steel,” Mater. Sci. Eng. A, 639, pp. 219–233. [CrossRef]
Coelho, R. S. , Kostka, A. , dos Santos, J. F. , and Kaysser-Pyzalla, A. , 2012, “Friction-Stir Dissimilar Welding of Aluminium Alloy to High Strength Steels: Mechanical Properties and Their Relation to Microstructure,” Mater. Sci. Eng. A, 556, pp. 175–183. [CrossRef]
Watanabe, T. , Takayama, H. , and Yanagisawa, A. , 2006, “Joining of Aluminum Alloy to Steel by Friction Stir Welding,” J. Mater. Process. Technol., 178(1–3), pp. 342–349. [CrossRef]
Tanaka, T. , Morishige, T. , and Hirata, T. , 2009, “Comprehensive Analysis of Joint Strength for Dissimilar Friction Stir Welds of Mild Steel to Aluminum Alloys,” Scr. Mater., 61(7), pp. 756–759. [CrossRef]
Lee, W. B. , Schmuecker, M. , Mercardo, U. A. , Biallas, G. , and Jung, S. B. , 2006, “Interfacial Reaction in Steel–Aluminum Joints Made by Friction Stir Welding,” Scr. Mater., 55(4), pp. 355–358. [CrossRef]
Springer, H. , Kostka, A. , dos Santos, J. F. , and Raabe, D. , 2011, “Influence of Intermetallic Phases and Kirkendall-Porosity on the Mechanical Properties of Joints Between Steel and Aluminium Alloys,” Mater. Sci. Eng. A, 528(13–14), pp. 4630–4642. [CrossRef]
Uzun, H. , Donne, C. D. , Argagnotto, A. , Ghidini, T. , and Gambaro, C. , 2005, “Friction Stir Welding of Dissimilar Al 6013-T4 to X5CrNi18-10 Stainless Steel,” Mater. Des., 26(1), pp. 41–46. [CrossRef]
Dehghani, M. , Amadesh, A. , and Akbari Mousavi, S. A. A. , 2013, “Investigations on the Effects of Friction Stir Welding Parameters on Intermetallic and Defect Formation in Joining Aluminum Alloy to Mild Steel,” Mater. Des., 49, pp. 433–441. [CrossRef]
Coelho, R. S. , Kostka, A. , Sheikhi, S. , dos Santos, J. F. , and Pyzalla, A. R. , 2008, “Microstructure and Mechanical Properties of an AA6181-T4 Aluminium Alloy to HC340 LA High Strength Steel Friction Stir Overlap Weld,” Adv. Eng. Mater., 10(10), pp. 961–972. [CrossRef]
Elrefaey, A. , Gouda, M. , Takahashi, M. , and Ikeuchi, K. , 2005, “Characterization of Aluminum/Steel Lap Joint by Friction Stir Welding,” J. Mater. Eng. Perform., 14(1), pp. 10–17. [CrossRef]
Movahedi, M. , Kokabi, A. H. , Seyed Reihani, S. M. , and Najafi, H. , 2011, “Mechanical and Microstructural Characterization of Al-5083/St-12 Lap Joints Made by Friction Stir Welding,” Procedia Eng., 10, pp. 3297–3303. [CrossRef]
Shen, Z. , Chen, Y. , Haghshenas, M. , and Gerlich, A. P. , 2015, “Role of Welding Parameters on Interfacial Bonding in Dissimilar Steel/Aluminum Friction Stir Welds,” Eng. Sci. Technol. Int. J., 18(2), pp. 270–277. [CrossRef]
Chen, Z. W. , Yazdanian, S. , and Littlefair, G. , 2013, “Effects of Tool Positioning on Joint Interface Microstructure and Fracture Strength of Friction Stir Lap Al-to-Steel Welds,” J. Mater. Sci., 48(6), pp. 2624–2634. [CrossRef]
Yang, Y. , Li, Y. L. , Zhang, H. , Guo, W. , and Zhou, Y. , 2015, “Control of Interfacial Intermetallic Compounds in Fe–Al Joining by Zn Addition,” Mater. Sci. Eng. A, 645, pp. 323–327. [CrossRef]
Zheng, Q. , Feng, X. , Shen, Y. , Huang, G. , and Zhao, P. , 2016, “Dissimilar Friction Stir Welding of 6061 Al to 316 Stainless Steel Using Zn as a Filler Metal,” J. Alloy Comp., 686, pp. 693–701. [CrossRef]
Chen, Y. C. , Komazaki, T. , Tsumura, T. , and Nakata, K. , 2008, “Role of Zinc Coat in Friction Stir Lap Welding Al and Zinc Coated Steel,” Mater. Sci. Technol., 24(1), pp. 33–39. [CrossRef]
Xue, P. , Ni, D. R. , Wang, D. , Xiao, B. L. , and Ma, Z. Y. , 2011, “Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of the Dissimilar Al–Cu Joints,” Mater. Sci. Eng. A, 528(13–14), pp. 4683–4689. [CrossRef]
Galvão, I. , Oliveira, J. C. , Loureiro, A. , and Rodrigues, D. M. , 2011, “Formation and Distribution of Brittle Structures in Friction Stir Welding of Aluminium and Copper: Influence of Process Parameters,” Sci. Technol. Weld. Joining, 16(8), pp. 681–689. [CrossRef]
Xue, P. , Xiao, B. L. , Ni, D. R. , and Ma, Z. Y. , 2010, “Enhanced Mechanical Properties of Friction Stir Welded Dissimilar Al–Cu Joint by Intermetallic Compounds,” Mater. Sci. Eng. A, 527(21-22), pp. 5723–5727. [CrossRef]
Song, Z. , Nakata, K. , Wu, A. , Liao, J. , and Zhou, L. , 2014, “Influence of Probe Offset Distance on Interfacial Microstructure and Mechanical Properties of Friction Stir Butt Welded Joint of Ti6Al4V and A6061 Dissimilar Alloys,” Mater. Des., 57, pp. 269–278. [CrossRef]
Galvão, I. , Loureiro, A. , and Rodrigues, D. M. , 2016, “Critical Review on Friction Stir Welding of Aluminium to Copper,” Sci. Technol. Weld. Joining, 21(7), pp. 523–546. [CrossRef]
Sato, Y. S. , Park, S. H. C. , Michiuchi, M. , and Kokawa, H. , 2004, “Constitutional Liquation During Dissimilar Friction Stir Welding of Al and Mg Alloys,” Scr. Mater., 50(9), pp. 1233–1236. [CrossRef]
Firouzdor, V. , and Kou, S. , 2010, “Formation of Liquid and Intermetallics in Al-to-Mg Friction Stir Welding,” Metall. Mater. Trans. A, 41(12), pp. 3238–3251. [CrossRef]
Chen, Y. C. , and Nakata, K. , 2008, “Friction Stir Lap Joining Aluminum and Magnesium Alloys,” Scr. Mater., 58(6), pp. 433–436. [CrossRef]
Rao, H. M. , Yuan, W. , and Badarinarayan, H. , 2015, “Effect of Process Parameters on Mechanical Properties of Friction Stir Spot Welded Magnesium to Aluminum Alloys,” Mater. Des., 66, pp. 235–245. [CrossRef]
Yan, J. , Xu, Z. , Li, Z. , Li, L. , and Yang, S. , 2005, “Microstructure Characteristics and Performance of Dissimilar Welds Between Magnesium Alloy and Aluminum Formed by Friction Stirring,” Scr. Mater., 53(5), pp. 585–589. [CrossRef]
Zettler, R. , da Silva, A. A. M. , Rodrigues, S. , Blanco, A. , and dos Santos, J. F. , 2006, “Dissimilar Al to Mg Alloy Friction Stir Welds,” Adv. Eng. Mater., 8(5), pp. 415–421. [CrossRef]
Kostka, A. , Coelho, R. S. , dos Santos, J. , and Pyzalla, A. R. , 2009, “Microstructure of Friction Stir Welding of Aluminium Alloy to Magnesium Alloy,” Scr. Mater., 60(11), pp. 953–956. [CrossRef]
Kumar, N. , Yuan, W. , and Mishra, R. S. , 2015, Friction Stir Welding of Dissimilar Alloys and Materials, Elsevier, Kidlington, Oxford.
Komarasamy, M. , Mishra, R. S. , Mukherjee, S. , and Young, M. , 2015, “Friction Stir Processed Thermally Stable Immiscible Nanostructured Alloys,” JOM, 67(12), pp. 2820–2827. [CrossRef]
Liyanage, T. , Kilbourne, J. , Gerlich, A. P. , and North, T. H. , 2009, “Joint Formation in Dissimilar Al Alloy/Steel and Mg Alloy/Steel Friction Stir Spot Welds,” Sci. Technol. Weld. Joining, 14(6), pp. 500–508. [CrossRef]
Chen, T. , 2009, “Process Parameters Study on FSW Joint of Dissimilar Metals for Aluminum–Steel,” J. Mater. Sci., 44(10), pp. 2573–2580. [CrossRef]
Movahedi, M. , Kokabi, A. H. , Seyed Reihani, S. M. , Cheng, W. J. , and Wang, C. J. , 2013, “Effect of Annealing Treatment on Joint Strength of Aluminum/Steel Friction Stir Lap Weld,” Mater. Des., 44, pp. 487–492. [CrossRef]
Ogura, T. , Saito, Y. , Nishida, T. , Nishida, H. , Yoshida, T. , Omichi, N. , Fujimoto, M. , and Hirose, A. , 2012, “Partitioning Evaluation of Mechanical Properties and the Interfacial Microstructure in a Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joint,” Scr. Mater., 66(8), pp. 531–534. [CrossRef]
Das, H. , Ghosh, R. N. , and Pal, T. K. , 2014, “Study on the Formation and Characterization of the Intermetallics in Friction Stir Welding of Aluminum Alloy to Coated Steel Sheet Lap Joint,” Metall. Mater. Trans. A, 45(11), pp. 5098–5106. [CrossRef]
Chen, Y. C. , and Nakata, K. , 2008, “Effect of the Surface State of Steel on the Microstructure and Mechanical Properties of Dissimilar Metal Lap Joints of Aluminum and Steel by Friction Stir Welding,” Metall. Mater. Trans. A, 39(8), pp. 1985–1992. [CrossRef]
Tan, C. W. , Jiang, Z. G. , Li, L. Q. , Chen, Y. B. , and Chen, X. Y. , 2013, “Microstructural Evolution and Mechanical Properties of Dissimilar Al–Cu Joints Produced by Friction Stir Welding,” Mater. Des., 51, pp. 466–473. [CrossRef]
Aonuma, M. , and Nakata, K. , 2011, “Dissimilar Metal Joining of 2024 and 7075 Aluminum Alloys to Titanium Alloys by Friction Stir Welding,” Mater. Trans., 52(5), pp. 948–952. [CrossRef]
Fu, B. , Qin, G. , Li, F. , Meng, X. , Zhang, J. , and Wu, C. , 2015, “Friction Stir Welding Process of Dissimilar Metals of 6061-T6 Aluminum Alloy to AZ31B Magnesium Alloy,” J. Mater. Process. Technol., 218, pp. 38–47. [CrossRef]
Liang, Z. , Chen, K. , Wang, X. , Yao, J. , Yang, Q. , Zhang, L. , and Shan, A. , 2013, “Effect of Tool Offset and Tool Rotational Speed on Enhancing Mechanical Property of Al/Mg Dissimilar FSW Joints,” Metall. Mater. Trans. A, 44(8), pp. 3721–3731. [CrossRef]
Sato, Y. S. , Shiota, A. , Kokawa, H. , Okamoto, K. , Yang, Q. , and Kim, C. , 2010, “Effect of Interfacial Microstructure on Lap Shear Strength of Friction Stir Spot Weld of Aluminium Alloy to Magnesium Alloy,” Sci. Technol. Weld. Joining, 15(4), pp. 319–324. [CrossRef]
Yamamoto, N. , Liao, J. , Watanabe, S. , and Nakata, K. , 2009, “Effect of Intermetallic Compound Layer on Tensile Strength of Dissimilar Friction-Stir Weld of a High Strength Mg Alloy and Al Alloy,” Mater. Trans., 50(12), pp. 2833–2838. [CrossRef]
Srinivasan, P. B. , Dietzel, W. , Zettler, R. , dos Santos, J. F. , and Sivan, V. , 2005, “Stress Corrosion Cracking Susceptibility of Friction Stir Welded AA7075–AA6056 Dissimilar Joint,” Mater. Sci. Eng.: A, 392(1–2), pp. 292–300. [CrossRef]
Srinivasan, P. B. , Dietzel, W. , Zettler, R. , dos Santos, J. F. , and Sivan, V. , 2007, “Effects of Inhibitors on Corrosion Behaviour of Dissimilar Aluminium Alloy Friction Stir Weldment,” Corros. Eng. Sci. Technol., 42(2), pp. 161–167. [CrossRef]
Akinlabi, E. T. , Andrews, A. , and Akinlabi, S. A. , 2014, “Effects of Processing Parameters on Corrosion Properties of Dissimilar Friction Stir Welds of Aluminium and Copper,” Trans. Nonferrous Met. Soc. China, 24(5), pp. 1323–1330. [CrossRef]
Davoodi, A. , Esfahani, Z. , and Sarvghad, M. , 2016, “Microstructure and Corrosion Characterization of the Interfacial Region in Dissimilar Friction Stir Welded AA5083 to AA7023,” Corros. Sci., 107, pp. 133–144. [CrossRef]
Sarvghad-Moghaddam, M. , Parvizi, R. , Davoodi, A. , Haddad-Sabzevar, M. , and Imani, C. , 2014, “Establishing a Correlation Between Interfacial Microstructures and Corrosion Initiation Sites in Al/Cu Joints by SEM–EDS and AFM–SKPFM,” Corros. Sci., 79, pp. 148–158. [CrossRef]
Bertoncello, J. C. B. , Manhabosco, S. M. , and Dick, L. F. P. , 2015, “Corrosion Study of the Friction Stir Lap Joint of AA7050-T76511 on AA2024-T3 Using the Scanning Vibrating Electrode Technique,” Corros. Sci., 94, pp. 359–367. [CrossRef]
Shen, C. , Zhang, J. , and Ge, J. , 2011, “Microstructures and Electrochemical Behaviors of the Friction Stir Welding Dissimilar Weld,” J. Environ. Sci., 23, pp. 32–35. [CrossRef]
Jedrasiak, P. , Shercliff, H. R. , Reily, A. , McShane, G. J. , Chen, J. C. , Wang, L. , Robson, J. , and Prangnell, P. , 2016, “Thermal Modeling of Al-Al and Al-Steel Friction Stir Spot Welding,” J. Mater. Eng. Perform., 25(9), pp. 4089–4098. [CrossRef]
Al-Roubaiy, A. O. , Nabat, S. M. , and Batako, A. D. , 2014, “Experimental and Theoretical Analysis of Friction Stir Welding of Al–Cu Joints,” Int. J Adv. Manuf. Technol., 71(9–12), pp. 1631–1642. [CrossRef]
Buffa, G. , Baffari, D. , Di Carco, A. , and Fratini, L. , 2015, “Friction Stir Welding of Dissimilar Aluminium–Magnesium Joints: Sheet Mutual Position Effects,” Sci. Technol. Weld. Joining, 20(4), pp. 271–279. [CrossRef]
Buffa, G. , Lisi, M. D. , Barcellona, A. , and Fratini, L. , 2016, “Material Flow Analysis in Dissimilar Friction Stir Welding of AA2024 and Ti6Al4V Butt Joints,” MATEC Web Conf., 80, pp. 1–7. [CrossRef]
Piccini, J. M. , and Svoboda, H. G. , 2017, “Tool Geometry Optimization in Friction Stir Spot Welding of Al-Steel Joints,” J. Manuf. Process, 26, pp. 142–154. [CrossRef]
Kishore, V. R. , Arun, J. , Padmanabhan, R. , and Balasubramanian, V. , 2015, “Parametric Studies of Dissimilar Friction Stir Welding Using Computational Fluid Dynamics Simulation,” Int. J Adv. Manuf. Technol., 80(1–4), pp. 91–98. [CrossRef]
Nandan, R. , Prabu, B. , De, A. , and Debroy, T. , 2007, “Improving Reliability of Heat Transfer and Materials Flow Calculations During Friction Stir Welding of Dissimilar Aluminum Alloys,” Weld. J., 86, pp. 313–322.
Jamshidi Aval, H. , Serajzadeh, S. , and Kokabi, A. H. , 2012, “Experimental and Theoretical Evaluations of Thermal Histories and Residual Stresses in Dissimilar Friction Stir Welding of AA5086-AA6061,” Int. J Adv. Manuf. Technol., 61(1–4), pp. 149–160. [CrossRef]
Al-Badour, F. , Merah, N. , Shuaib, A. , and Bazoune, A. , 2014, “Thermo-Mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys,” Int. J Adv. Manuf. Technol., 72(5–8), pp. 607–617. [CrossRef]
Matheny, M. P. , and Graff, K. F. , 2015, Ultrasonic Welding of Metals in Power Ultrasonics, J. A. Gallego-Juárez , and K. F. Graff , Woodhead Publishing, Cambridge, UK, pp. 259–293.
Martinsen, K. , Hu, S. J. , and Carlson, B. E. , 2015, “Joining of Dissimilar Materials,” CIRP Ann. Manuf. Technol., 64(2), pp. 679–699. [CrossRef]
Cai, W. , Kang, B. , and Hu, S. J. , 2017, Ultrasonic Welding for Li-Ion Batteries, ASME Press, New York.
Dehoff, R. R. , and Babu, S. S. , 2010, “Characterization of Interfacial Microstructures in 3003 Aluminum Alloy Blocks Fabricated by Ultrasonic Additive Manufacturing,” Acta Mater., 58(13), pp. 4305–4315. [CrossRef]
Schick, D. E. , Babu, S. S. , Foster, D. , Dapino, M. J. , Short, M. , and Lippold, J. C. , 2011, “Transient Thermal Response in Ultrasonic Additive Manufacturing of Aluminum 3003,” Rapid Prototyping J., 17(5), pp. 369–379. [CrossRef]
Hetrick, E. T. , Baer, J. R. , Zhu, W. , Reatherford, L. V. , Grima, A. J. , Scholl, D. J. , Wilkosz, D. E. , Fatima, S. , and Ward, S. M. , 2009, “Ultrasonic Metal Welding Process Robustness in Aluminum Automotive Body Construction Applications,” Weld. J., 88(2), pp. 149-s–158-s.
Zhao, Y. Y. , Li, D. , and Zhang, Y. S. , 2013, “Effect of Welding Energy on Interface Zone of Al-Cu Ultrasonic Welded Joint,” Sci. Technol. Weld. Joining, 18(4), pp. 354–360. [CrossRef]
Zhao, J. , Li, H. , Choi, H. , Cai, W. , Abell, J. A. , and Li, X. , 2013, “Insertable Thin Film Thermocouples for In Situ Transient Temperature Monitoring in Ultrasonic Metal Welding of Battery Tabs,” J. Manuf. Processes, 15(1), pp. 136–140. [CrossRef]
Gibert, J. M. , 2009, “Dynamics of Ultrasonic Consolidation,” Ph.D. dissertation, Clemson University, Clemson, SC.
Lu, Y. , Song, H. , Taber, G. A. , Foster, D. R. , Daehn, G. S. , and Zhang, W. , 2017, “In-Situ Measurement of Relative Motion During Ultrasonic Spot Welding of Aluminum Alloy Using Photonic Doppler Velocimetry,” J. Mater. Process. Technol., 231, pp. 431–440. [CrossRef]
Lee, S. S. , Kim, T. H. , Hu, S. J. , Cai, W. , and Abell, J. A. , 2015, “Analysis of Weld Formation in Multilayer Ultrasonic Metal Welding Using High-Speed Images,” ASME J. Manuf. Sci. Eng., 137(3), p. 031016.
Yang, Y. , Janaki Ram, G. D. , and Stucker, B. E. , 2009, “Bond Formation and Fiber Embedment During Ultrasonic Consolidation,” J. Mater. Process. Technol., 209(10), pp. 4915–4924. [CrossRef]
Bakavos, D. , and Prangnell, P. B. , 2010, “Mechanisms of Joint and Microstructure Formation in High Power Ultrasonic Spot Welding 6111 Aluminium Automotive Sheet,” Mater. Sci. Eng. A, 527(23), pp. 6320–6334. [CrossRef]
Xu, L. , Wang, L. , Chen, Y. , Robson, J. D. , and Prangnell, P. B. , 2016, “Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds,” Metall. Mater. Trans. A, 47(1), pp. 334–346. [CrossRef]
Ren, D. , Zhao, K. M. , Pan, M. , Chang, Y. , Gang, S. , and Zhao, D. W. , 2017, “Ultrasonic Spot Welding of Magnesium Alloy to Titanium Alloy,” Scr. Mater., 126, pp. 58–62. [CrossRef]
Fujii, H. T. , Goto, Y. , Sato, Y. S. , and Kokawa, H. , 2016, “Microstructure and Lap Shear Strength of the Weld Interface in Ultrasonic Welding of Al Alloy to Stainless Steel,” Scr. Mater., 116, p. 135. [CrossRef]
Wu, X. , Liu, T. , and Cai, W. , 2015, “Microstructure, Welding Mechanism, and Failure of Al/Cu Ultrasonic Welds,” J. Manuf. Processes, 20(1), pp. 321–331. [CrossRef]
Chen, Y.-C. , Bakavos, D. , Gholinia, A. , and Prangnell, P. B. , 2012, “HAZ Development and Accelerated Post-Weld Natural Ageing in Ultrasonic Spot Welding Aluminum 6111-T4 Automotive Sheet,” Acta Mater., 60(6–7), pp. 2816–2828. [CrossRef]
Zhang, Z. , Wang, K. , Li, J. , Yu, Q. , and Cai, W. , 2017, “Investigation of Interfacial Layer for Ultrasonic Spot Welded Copper to Aluminum Joints,” Sci. Rep., 7(1), p. 12505. [CrossRef] [PubMed]
Lee, S. S. , Kim, T. H. , Hu, S. J. , Cai, W. , Abell, J. A. , and Li, J. , 2013, “Characterization of Joint Quality in Ultrasonic Welding of Battery Tabs,” ASME J. Manuf. Sci. Eng., 135(2), p. 021004.
Ni, Z. L. , and Ye, F. X. , 2016, “Weldability and Mechanical Properties of Ultrasonic Joining of Aluminum to Copper Alloy With an Interlayer,” Mater. Lett., 182, pp. 19–22. [CrossRef]
Cai, W. W. , Abell, J. A. , Tang, J. C. H. , Wincek, M. A. , Boor, P. J. , Spacher, P. F. , and Hu, S. J. , 2016, “Method and System for Online Quality Monitoring and Control of a Vibration Welding Process,” U.S. Patent No. 8,702,882.
Lee, S. , Shao, C. , Kim, T. H. , Hu, S. J. , Kannatey-Asibu, E. , Cai, W. , Spicer, J. P. , Abell, J. A. , and Abell , 2014, “Characterization of Ultrasonic Metal Welding by Correlating Online Sensor Signals With Weld Attributes,” ASME J. Manuf. Sci. Eng., 136(5), p. 051019. [CrossRef]
Guo, W. , Shao, C. , Kim, T. H. , Hu, S. J. , Jin, J. , Spicer, J. P. , and Wang, H. , 2016, “Online Process Monitoring With Near-Zero Misdetection for Ultrasonic Welding of Lithium-Ion Batteries: An Integration of Univariate and Multivariate Methods,” J. Manuf. Syst., 38, pp. 141–150. [CrossRef]
Shao, C. , Kim, T. H. , Hu, S. J. , Jin, J. , Abell, J. A. , and Spicer, J. P. , 2016, “Tool Wear Monitoring for Ultrasonic Metal Welding of Lithium-Ion Batteries,” ASME J. Manuf. Sci. Eng., 138, p. 051005. [CrossRef]
Green Car Congress, 2013, “Ultrasonic Welding in the Battery Pack for the Cadillac ELR,” BioAge Group, LLC, Chandigarh, India, accessed July 29, 2018 http://www.greencarcongress.com/2013/08/elr-20130802.html
Cai, W. , Kang, B. , and Tan, C. A. , 2013, “Actively Controlled Vibration Welding System and Method,” U.S. Patent No. 8,408,445.
Lee, S. S. , Kim, K. , Cai, W. , and Abell, J. A. , 2014, “Parasitic Vibration Attenuation in Ultrasonic Welding of Battery Tabs,” Int. J. Adv. Manuf. Technol., 71(1–4), pp. 181–195. [CrossRef]
Cai, W. , Kang, B. , and Tan, C. A. , 2013, “Passively Damped Vibration Welding System and Method,” GM Global Technology Operations LLC, Detroit, MI, U.S. Patent No. 8,409,383.
Siddiq, A. , and Ghassemieh, E. , 2008, “Thermomechanical Analyses of Ultrasonic Welding Process Using Thermal and Acoustic Softening Effects,” Mech. Mater., 40(12), pp. 982–1000. [CrossRef]
Lee, D. K. , Kannatey-Asibu , E., Jr. , and Cai, W. , 2013, “Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs,” ASME J. Manuf. Sci. Eng., 135(6), p. 061011. [CrossRef]
Shen, N. , Samanta, A. , Ding, H. , and Cai, W. , 2016, “Simulating Microstructure Evolution of Battery Tabs During Ultrasonic Welding,” J. Manuf. Processes, 23, pp. 306–314. [CrossRef]
Lee, D. K. , and Cai, W. , 2017, “The Effect of Horn Knurl Geometry on Battery Tab Ultrasonic Welding Quality: 2D Finite Element Simulations,” J. Manuf. Processes, 28(Part 3), pp. 428–441. [CrossRef]
Chen, K. , and Zhang, Y. , 2015, “Mechanical Analysis of Ultrasonic Welding Considering Knurl Pattern of Sonotrode Tip,” Mater. Des., 87, pp. 393–404. [CrossRef]
Kang, B. , Cai, W. , and Tan, C. , 2014, “Vibrational Energy Loss Analysis of Battery Bus-Bar in Ultrasonic Welding,” J. Manuf. Processes, 16(2), pp. 218–232. [CrossRef]
Kang, B. , Cai, W. , and Tan, C. , 2013, “Dynamic Response of Battery Tabs Under Ultrasonic Welding,” ASME J. Manuf. Sci. Eng., 135(5), p. 051013. [CrossRef]
Blazynski, T. Z. , 1983, Explosive Welding, Forming and Compaction, Springer, Berlin, Germany.
Cowan, G. R. , Douglas, J. J. , and Holtzmann, A. R. , 1964, “Explosive Bonding,” E I du Pont de Nemours and Co, Wilmington, DE, U.S. Patent No. 3,137,937.
Vivek, A. , Hansen, S. R. , Liu, B. C. , and Daehn, G. S. , 2013, “Vaporizing Foil Actuator: A Tool for Collision Welding,” J. Mater. Process. Technol, 213(12), pp. 2304–2311. [CrossRef]
Ngaile, G. , Lohr, P. , Lowrie, J. , and Modlin, R. , 2014, “Development of Chemically Produced Hydrogen Energy-Based Impact Bonding Process for Dissimilar Metals,” J. Manuf. Process, 16(4), pp. 518–526. [CrossRef]
Daehn, G. S. , and Lippold, J. C. , 2011, “Low-Temperature Laser Spot Impact Welding Driven Without Contact,” Ohio State University, Columbus, OH, U.S. Patent No. 8,084,710 B2. https://patents.google.com/patent/US8084710
Loureiro, A. , Mendes, R. , Ribeiro, J. B. , Leal, R. M. , and Galvão, I. , 2016, “Effect of Explosive Mixture on Quality of Explosive Welds of Copper to Aluminium,” Mater. Des., 95(Suppl. C), pp. 256–267. [CrossRef]
Bergmann, O. R. , Cowan, G. R. , and Holtzman, A. H. , 1966, “Experimental Evidence of Jet Formation During Explosion Cladding,” Aime. Met. Soc. Trans., 236(5), pp. 646–653.
Faes , K. , Baaten , T. , De Waele , W. , and Debroux , N. , 2010, "Joining of Copper to Brass Using Magnetic Pulse Welding," Proceedings of the 4th International conference on High Speed Forming, Columbus, OH, pp. 84–96.
Grigoriev, A. N. , and Pavlenko, A. V. , 2009, “Pressure Generated by the Electric Explosion of Metal Foils,” Tech. Phys. Lett., 35(9), pp. 865–868. [CrossRef]
Vivek, A. , Liu, B. , Sakkinen, D. , Harris, M. , and Daehn, G. , 2015, “Impact Welding of Aluminum Alloy 6061 to Dual Phase 780 Steel Using Vaporizing Foil Actuator,” SAE Paper No. 2015-01-0701.
Vivek, A. , Wright, S. M. , Liu, B. C. , Hansen, S. R. , Brune, R. C. , Thurston, B. P. , Taber, G. A. , Lee, T. , Mao, Y. , and Dittrich, T. J. , 2016, “Benchmarking and Refining the Vaporizing Foil Actuator Spot Welding Process,” HIGH SPEED Form, p. 289.
Wang, H. , Vivek, A. , Wang, Y. , Taber, G. , and Daehn, G. S. , 2016, “Laser Impact Welding Application in Joining Aluminum to Titanium,” J. Laser Appl., 28(3), p. 032002. [CrossRef]
Wang, X. , Gu, C. , Zheng, Y. , Shen, Z. , and Liu, H. , 2014, “Laser Shock Welding of Aluminum/Aluminum and Aluminum/Copper Plates,” Mater. Des., 56, pp. 26–30. [CrossRef]
Findik, F. , 2011, “Recent Developments in Explosive Welding,” Mater. Des., 32(3), pp. 1081–1093. [CrossRef]
Psyk, V. , Risch, D. , Kinsey, B. L. , Tekkaya, A. E. , and Kleiner, M. , 2011, “Electromagnetic Forming—A Review,” J. Mater. Process. Technol., 211(5), pp. 787–829. [CrossRef]
Zittel, G. , 2010, “A Historical Review of High Speed Metal Forming,” Fourth International Conference on High Speed Forming, Columbus, OH, Mar. 9–10.
Golovashchenko, S. , Bessonov, N. , and Davies, R. , 2007, “Material Formability and Coil Design in Electromagnetic Forming,” J. Mater. Eng. Perform., 16(3), pp. 314–320. [CrossRef]
Hahn, M. , Weddeling, C. , Lueg-Althoff, J. , and Tekkaya, A. E. , 2016, “Analytical Approach for Magnetic Pulse Welding of Sheet Connections,” J. Mater. Process. Technol., 230(Suppl. C), pp. 131–142. [CrossRef]
Aizawa, T. , Kashani, M. , and Okagawa, K. , 2007, “Application of Magnetic Pulse Welding for Aluminum Alloys and SPCC Steel Sheet Joints,” Weld. J., 86, pp. 119–124.
Barker, L. M. , and Hollenbach, R. E. , 1972, “Laser Interferometer for Measuring High Velocities of Any Reflecting Surface,” J. Appl. Phys., 43(11), pp. 4669–4675. [CrossRef]
Strand, O. T. , Goosman, D. R. , Martinez, C. , Whitworth, T. L. , and Kuhlow, W. W. , 2006, “Compact System for High-Speed Velocimetry Using Heterodyne Techniques,” Rev. Sci. Instrum., 77(8), p. 083108. [CrossRef]
Wronka, B. , 2014, “Ultrasonic Flaw Detection for Quality Assessment of Explosively Clad Plates,” Adv. Mater. Sci. Eng., 2014, p. 171279. [CrossRef]
Guo, X. Z. , Tao, J. , Yuan, Z. , Zhang, L. , and Sun, X. , 2012, “Interface and Properties of Explosive Welded TA1/Al Clad Tube,” Rare Met. Mat. Eng., 41(1), pp. 139–142.
Zhang, Y. , Babu, S. S. , Prothe, C. , Blakely, M. , Kwasegroch, J. , LaHa, M. , and Daehn, G. S. , 2011, “Application of High Velocity Impact Welding at Varied Different Length Scales,” J. Mater. Process. Technol., 211(5), pp. 944–952. [CrossRef]
Cowan, G. R. , Bergmann, O. R. , and Holtzman, A. H. , 1971, “Mechanism of Bond Zone Wave Formation in Explosion-Clad Metals,” Metall. Mater. Trans. B, 2(11), pp. 3145–3155. [CrossRef]
Czajkowski, H. , 1973, “Explosive Welding of Aluminum-Steel Prefabricates,” Use of High-Energy Rate Methods for Forming, Welding, and Compaction, p. 9.
Song, J. , Kostka, A. , Veehmayer, M. , and Raabe, D. , 2011, “Hierarchical Microstructure of Explosive Joints: Example of Titanium to Steel Cladding,” Mater. Sci. Eng.: A, 528(6), pp. 2641–2647. [CrossRef]
Gloc, M. , Wachowski, M. , Plocinski, T. , and Kurzydlowski, K. J. , 2016, “Microstructural and Microanalysis Investigations of Bond Titanium Grade1/Low Alloy Steel st52-3N Obtained by Explosive Welding,” J. Alloys Compd., 671, pp. 446–451. [CrossRef]
Göbel, G. , Beyer, E. , Kaspar, J. , and Brenner, B. , 2012, “Dissimilar Metal Joining: Macro-and Microscopic Effects of MPW,” Fifth International Conference on High Speed Forming, Pittsburgh, PA, June 3–7, pp. 179–188.
Fan, Z. , Yu, H. , and Li, C. , 2016, “Interface and Grain-Boundary Amorphization in the Al/Fe Bimetallic System During Pulsed-Magnetic-Driven Impact,” Scr. Mater., 110, pp. 14–18. [CrossRef]
Li, J. , Yu, Q. , Zhang, Z. , Xu, W. , and Sun, X. , 2016, “Formation Mechanism for the Nanoscale Amorphous Interface in Pulse-Welded Al/Fe Bimetallic Systems,” Appl. Phys. Lett., 108(20), p. 201606 [CrossRef]
Rosenthal, I. , Miriyev, A. , Tuval, E. , Stern, A. , and Frage, N. , 2014, “Characterization of Explosion-Bonded Ti-Alloy/Steel Plate With Ni Interlayer,” Metallogr. Microstruct. Anal, 3(2), pp. 97–103. [CrossRef]
Hansen, S. R. , Vivek, A. , and Daehn, G. S. , 2015, “Impact Welding of Aluminum Alloys 6061 and 5052 by Vaporizing Foil Actuators: Heat-Affected Zone Size and Peel Strength,” ASME J. Manuf. Sci. Eng., 137(5), p. 51013. [CrossRef]
Vargo, A. , and Prothe, C. , 2008, “Comparative Tensile Strength and Shear Strength of Detaclad Explosion Clad Products,” International Application of Magnetic Pulse Welding for Aluminum Alloys and SPCC Steel Sheet Joints, pp. 119–124.
Acarer, M. , and Demir, B. , 2008, “An Investigation of Mechanical and Metallurgical Properties of Explosive Welded Aluminum–Dual Phase Steel,” Mater. Lett., 62(25), pp. 4158–4160. [CrossRef]
Benzing, J. T. , He, M. , Vivek, A. , Taber, G. A. , Mills, M. J. , and Daehn, G. S. , 2017, “A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals,” J. Mater. Eng. Perform., 26(3), pp. 1229–1235. [CrossRef]
Hahn, M. , Weddeling, C. , Taber, G. , Vivek, A. , Daehn, G. S. , and Tekkaya, A. E. , 2016, “Vaporizing Foil Actuator Welding as a Competing Technology to Magnetic Pulse Welding,” J. Mater. Process. Technol., 230, pp. 8–20. [CrossRef]
Karolczuk, A. , Kowalski, M. , Bański, R. , and Zok, F. , 2013, “Fatigue Phenomena in Explosively Welded Steel-Titanium Clad Components Subjected to Push-Pull Loading,” Int. J. Fatigue, 48, pp. 101–108. [CrossRef]
Mousavi, A. A. A. , Burley, S. J. , and Al-Hassani, S. T. S. , 2005, “Simulation of Explosive Welding Using the Williamsburg Equation of State to Model Low Detonation Velocity Explosives,” Int. J. Impact Eng., 31(6), pp. 719–734. [CrossRef]
Feng, J. , Chen, P. , Zhou, Q. , Dai, K. , An, E. , and Yuan, Y. , 2017, “Numerical Simulation of Explosive Welding Using Smoothed Particle Hydrodynamics Method,” Multiphysics, 11(3), pp. 315–326.
Osher, J. E. , Barnes, G. , Chau, H. H. , Lee, R. S. , Lee, C. , Speer, R. , and Weingart, R. C. , 1989, “Operating Characteristics and Modeling of the LLNL 100-kV Electric Gun,” IEEE Trans. Plasma Sci., 17(3), pp. 392–402. [CrossRef]
Curtis, A. D. , Banishev, A. A. , Shaw, W. L. , and Dlott, D. D. , 2014, “Laser-Driven Flyer Plates for Shock Compression Science: Launch and Target Impact Probed by Photon Doppler Velocimetry,” Rev. Sci. Instrum., 85(4), p. 43908. [CrossRef]
Akbari Mousavi, S. A. A. , and Al-Hassani, S. T. S. , 2008, “Finite Element Simulation of Explosively-Driven Plate Impact With Application to Explosive Welding,” Mater. Des, 29(1), pp. 1–19. [CrossRef]
Wilson, M. P. W. , and Brunton, J. H. , 1970, “Wave Formation Between Impacting Liquids in Explosive Welding and Erosion,” Nature, 226(5245), pp. 538–541. [CrossRef] [PubMed]
Nassiri, A. , Chini, G. , Vivek, A. , Daehn, G. , and Kinsey, B. , 2015, “Arbitrary Lagrangian-Eulerian Finite Element Simulation and Experimental Investigation of Wavy Interfacial Morphology During High Velocity Impact Welding,” Mater. Des., 88, pp. 345–358. [CrossRef]
Nassiri, A. , and Kinsey, B. , 2016, “Numerical Studies on High-Velocity Impact Welding: Smoothed Particle Hydrodynamics (SPH) and Arbitrary Lagrangian–Eulerian (ALE),” J. Manuf. Process, 24, pp. 376–38. [CrossRef]
Kiselev, S. P. , 2012, “Numerical Simulation of Wave Formation in an Oblique Impact of Plates by the Method of Molecular Dynamics,” J. Appl. Mech. Tech. Phys., 53(6), pp. 907–917. [CrossRef]
Abe, A. , 1999, “Numerical Simulation of the Plastic Flow Field Near the Bonding Surface of Explosive Welding,” J. Mater. Process. Technol., 85(1–3), pp. 162–165. [CrossRef]
Raoelison , R. N. , Sapanathan , T. , Padayodi , E. , Buiron , N. , and Rachik , M. , 2016, "Interfacial Kinematics and Governing Mechanisms Under the Influence of High Strain Rate Impact Conditions: Numerical Computations of Experimental Observations," J. Mech. Phys. Solids, 96, pp.147–161. [CrossRef]
Nassiri, A. , Vivek, A. , Abke, T. , Liu, B. , Lee, T. , and Daehn, G. , 2017, “Depiction of Interfacial Morphology in Impact Welded Ti/Cu Bimetallic Systems Using Smoothed Particle Hydrodynamics,” Appl. Phys. Lett., 110(23), p. 231601. [CrossRef]
Gulenc, B. , 2008, “Investigation of Interface Properties and Weldability of Aluminum and Copper Plates by Explosive Welding Method,” Mater. Des., 29(1), pp. 275–278. [CrossRef]
Crossland, B. , and Williams, J. D. , 1970, “Explosive Welding,” Int. Mater. Rev., 15(1), pp. 79–100. [CrossRef]
Lysak, V. I. , and Kuzmin, S. V. , 2012, “Lower Boundary in Metal Explosive Welding. Evolution of Ideas,” J. Mater. Process. Technol., 212(1), pp. 150–156. [CrossRef]
Akbari Mousavi, S. A. A. , and Farhadi Sartangi, P. , 2009, “Experimental Investigation of Explosive Welding of Cp-Titanium/AISI 304 Stainless Steel,” Mater. Des., 30(3), pp. 459–468. [CrossRef]
Durgutlu, A. , Okuyucu, H. , and Gulenc, B. , 2008, “Investigation of Effect of the Stand-Off Distance on Interface Characteristics of Explosively Welded Copper and Stainless Steel,” Mater. Des., 29(7), pp. 1480–1484. [CrossRef]
Kahraman, N. , Gülenç, B. , and Findik, F. , 2005, “Joining of Titanium/Stainless Steel by Explosive Welding and Effect on Interface,” J. Mater. Process. Technol., 169(2), pp. 127–133. [CrossRef]
Manikandan, P. , Hokamoto, K. , Fujita, M. , Raghukandan, K. , and Tomoshige, R. , 2008, “Control of Energetic Conditions by Employing Interlayer of Different Thickness for Explosive Welding of Titanium/304 Stainless Steel,” J. Mater. Process. Technol., 195(1–3), pp. 232–240. [CrossRef]
Jaramillo, D. , Szecket, A. , and Inal, O. T. , 1987, “On the Transition From a Waveless to a Wavy Interface in Explosive Welding,” Mater. Sci. Eng., 91, pp. 217–222. [CrossRef]
El-Sobky, H. , 1983, “Mechanics of Explosive Welding,” Explosive Welding, Forming and Compaction, Springer, Dordrecht, The Netherlands., pp. 189–217.
Kazakov, N. F. , 1985, Diffusion Bonding of Materials, Pergamon Press, New York.
Jahn, S. , Sändig, S. , Dahms, S. , and Gemse, F. , 2014, “Diffusion Bonding Systems,” Materialwiss. Werkstofftech., 45(9), pp. 807–814. [CrossRef]
Liu, P. , Li, Y. J. , Geng, H. R. , and Wang, J. , 2006, “Investigation of Interfacial Structure of Mg/Al Vacuum Diffusion-Bonded Joint,” Vaccum, 80(5), pp. 395–399. [CrossRef]
Dunkerton, S. , Hall, A. , and Cbi, C. , 1991, “Diffusion Bonding–an Overview,” Diffusion Bonding, Vol. 2, Elsevier Applied Science, London, pp. 1–11.
Horigan , W. L., Jr. , and Feduska, W. , 1965, “Process for Diffusion-Bonding,” U.S. Patent No. 3197858 A. https://patents.google.com/patent/US3197858A/en.
Akca, E. , and Gürsel, A. , 2015, “The Importance of Interlayers in Diffusion Welding - a Review,” Period. Eng. Nat. Sci. (PEN), 3(2), pp. 12–16.
Pfaffenberger, R. T. , and Horick, L. V. R. , 1969, “Roll Welded Structure and Process,” U.S. Patent No. 3453717. https://patents.google.com/patent/US3453717
Yang, W. , 2011, “An Investigation of Bonding Mechanism in Metal Cladding by Warm Rolling,” Ph.D. dissertation, Texas A&M University, College Station, TX.
Duvall, D. S. , Owczarski, W. A. , and Paulonis, D. F. , 1972, “Diffusion Bonding Utilizing Transient Liquid Phase,” U.S. Patent No. 3678570A. https://patents.google.com/patent/US3678570A/en.
Pouranvari, M. , Ekrami, A. , and Kokabi, A. , 2009, “Effect of Bonding Temperature on Microstructure Development During TLP Bonding of a Nickel Base Superalloy,” J. Alloy. Compd., 469(1–2), pp. 270–275. [CrossRef]
Kwon, Y.-S. , Kim, J.-S. , Moon, J.-S. , and Suk, M.-J. , 2000, “Transient Liquid Phase Bonding Process Using Liquid Phase Sintered Alloy as an Interlayer Material,” J. Mater. Sci., 35(8), pp. 1917–1924. [CrossRef]
Bailey , F. , and Borbidge , W. , 1981, “Solid State Metal-Ceramic Reaction Bonding,” Surfaces and Interfaces in Ceramic and Ceramic—Metal Systems, Springer, Switzerland , pp. 525–533.
NASA’s Jet Propulsion Laboratory, Pasadena, California, 2018, “Mo/Ti Diffusion Bonding for Making Thermoelectric Devices,” http://www.techbriefs.com/component/content/article/2014.
Wu, X. , Chandel, R. , and Li, H. , 2001, “Evaluation of Transient Liquid Phase Bonding Between Nickel-Based Superalloys,” J. Mater. Sci., 36(6), pp. 1539–1546. [CrossRef]
Begg, A. R. , 1984, “Diffusion Bonding of Aluminium Surfaces Coated With Gallium,” Europe Patent No. EP0123382 A1. https://patents.google.com/patent/EP0123382A1/en.
Kadhim, Z. D. , Al- Azzawi, A. I. , and Al-Janabi, S. J. , 2009, “Effect of the Diffusion Bonding Conditions on Joints Strength,” J. Eng. Dev., 13(1), pp. 179–187.
Cook, G. O. , and Sorensen, C. D. , 2011, “Overview of Transient Liquid Phase and Partial Transient Liquid Phase Bonding,” J. Mater. Sci., 46(16), pp. 5305–5323. [CrossRef]
Gale, W. , and Butts, D. , 2004, “Transient Liquid Phase Bonding,” Sci. Technol. Weld. Joining, 9(4), pp. 283–300. [CrossRef]
Mahendran, G. , Babu, S. , and Balasubramanian, V. , 2009, “Analyzing the Effect of Diffusion Bonding Process Parameters on Bond Characteristics of Mg-Al Dissimilar Joints,” J. Mater. Eng. Perform., 19(5), pp. 657–665. [CrossRef]
Ravisankar, B. , Krishnamoorthi, J. , Ramakrishnan, S. S. , and Angelo, P. C. , 2009, “Diffusion Bonding of SU 263,” J. Mater. Process. Technol., 209(4), pp. 2135–2144. [CrossRef]
Elmer, J. , W., Klingmann, J. , and Bibber , K. V. , 2001, "Diffusion bonding and brazing of high purity copper for linear collider accelerator structures," Phys. Rev. ST Accel. Beams, 4, p. 053502.
Thomas , G. , Volker , T. , and Andreas , H. , 2016, “Diffusion Bonding: Influence of Process Parameters and Material Microstructure,” Joining Technologies, Intech Open Publishers, London, UK.
Mahendrana, G. , Balasubramanian, V. , and Senthilvelan, T. , 2009, “Developing Diffusion Bonding Windows for Joining AZ31B Magnesium–AA2024 Aluminum Alloys,” Mater. Des., 30(4), pp. 1240–1244. [CrossRef]
Samavatian, M. , Zakipour, S. , and Paidar, M. , 2016, “Effect of Bonding Pressure on Microstructure and Mechanical Properties of Ti-6Al-4V Diffusion-Bonded Joint,” Weld. World, 61(1), pp. 69–74. [CrossRef]
Mahendiran, G. , Balasubramanian, V. , and Sethilvelan, T. , 2011, “Mechanical and Metallurgical Properties of Diffusion Bonded AA2024 Aluminum Alloy and Commercial Grade Copper,” Elixir Mech. Eng., 38, pp. 4283–4289. https://www.elixirpublishers.com/articles/1350560379_38%20(2011)%204283-4289.pdf.
Fernandusa, M. J. , Senthilkumar, T. , and Balasubramanian, V. , 2011, “Developing Temperature–Time and Pressure–Time Diagrams for Diffusion Bonding AZ80 Magnesium and AA6061 Aluminum Alloys,” Mater. Des., 32(3), pp. 1651–1656. [CrossRef]
Gietzelt, T. , Toth, V. , Hüll, A. , and Dittmeyer, R. , 2017, “Dependency of Deformation During Diffusion Welding on Aspect Ratio Using Samples Made of SS 304 (1.4301),” Adv. Eng. Mater., 19(2), p. 1600344. [CrossRef]
Wang, Y. , Luo, G. , Zhang, J. , Shen, Q. , and Zhang, L. , 2013, “Microstructure and Mechanical Properties of Diffusion-Bonded Mg-Al Joints Using Silver Film as Interlayer,” Mater. Sci. Eng. A, 559, pp. 868–874. [CrossRef]
Tang, B. , Qi, X. S. , Kou, H. C. , Li, J. S. , and Milenkovic, S. , 2016, “Recrystallization Behavior at Diffusion Bonding Interface of High Nb Containing TiAl Alloy,” Adv. Eng. Mater., 18(4), pp. 657–664. [CrossRef]
Simoes, S. , Viana, F. , Ventzke, V. , Kocak, M. , Ramos, A. S. , Vieira, M. T. , and Vieira, M. F. , 2010, “Diffusion Bonding of TiAl Using Ni/Al Multilayers,” J. Mater. Sci., 45(16), pp. 4351–4357. [CrossRef]
Li, S. X. , Xuan, F. Z. , Tu, S. T. , and Yu, S. R. , 2008, “Microstructure Evolution and Interfacial Failure Mechanism in 316 LSS Diffusion-Bonded Joints,” Mater. Sci. Eng. A, 1-2, pp. 488–491. [CrossRef]
Somekawa, H. , Hosokawa, H. , Watanabe, H. , and Higashi, K. , 2003, “Diffusion Bonding in Super Plastic Mg Alloys,” Mater. Sci. Eng. A, 339(1–2), pp. 328–333. [CrossRef]
Kundu, S. , Ghosh, M. , Laik, A. , Bhamumurthy, K. , Kale, G. B. , and Chatterjee, S. , 2005, “Diffusion Bonding of Commercially Pure Titanium to 304 SS Using Copper Interlayer,” Mater. Sci. Eng. A, 407(1–2), pp. 154–160. [CrossRef]
Kundu, S. , and Chatterjee, S. , 2007, “Mechanical Properties of Diffusion Bonded Joints Between Titanium and Stainless Steel With Nickel Interlayer,” Mater. Sci. Technol., 23(10), pp. 1167–1172. [CrossRef]
Liu, J. , Cao, J. , Lin, X. , Song, X. , and Feng, J. , 2013, “Microstructure and Mechanical Properties of Diffusion Bonded Single Crystal to Polycrystalline Ni-Based Super Alloys Joint,” Mater. Des., 49, pp. 622–626. [CrossRef]
Akca, E. , and Gursel, A. , 2017, “The Effect of Diffusion Welding Parameters on the Mechanical Properties of Titanium Alloy and Aluminum Couples,” Metals, 7(1), p. 22. [CrossRef]
Lodge, K. W. , and Briggs, G. A. D. , 1983, “The Potential Drop Across an Imperfect Diffusion Bond,” J. Mater. Sci., 18(8), pp. 2354–2360. [CrossRef]
Xuan, F. Z. , Zhang, B. , and Tu, S. T. , 2007, “Interfacial Resistance Method for Quality Evaluation of Diffusion Bonded Joints,” Key Eng. Mater., 353–358, pp. 1944–1947. [CrossRef]
Li, Y. , Xuan, F. , Li, S. , and Tu, S. , 2011, “Quality Evaluation of Diffusion Bonded Joints by Electrical Resistance Measuring and Microscopic Fatigue Testing,” Chin. J. Mech. Eng., 24(2), pp. 187–193. [CrossRef]
Yilmaz, O. , and Celik, H. , 2003, “Electrical and Thermal Properties of the Interface at Diffusion-Bonded and Soldered 304 Stainless Steel and Copper Bimetal,” J. Mater. Process. Technol., 141(1), pp. 67–76. [CrossRef]
Li, S.-X. , Li, L. , Yu, S.-R. , Akid, R. , and Xia, H.-B. , 2011, “Investigation of Intergranular Corrosion of 316 L Stainless Steel Diffusion Bonded Joint by Electrochemical Potentiokinetic Reactivation,” Corros. Sci., 53(1), pp. 99–104. [CrossRef]
Zaid, B. , Taouinet, M. , Souami, N. , and Lebaili, S. , 2013, “Microstructure and Corrosion Aspects of Dissimilar Joints of Zircaloy-4 and 304 L Stainless Steel,” J. Mater. Eng. Perform., 22(3), pp. 854–862. [CrossRef]
Rocha, L. A. , Ariza, E. , Costa, A. M. , Oliveira, F. J. , and Silva, R. F. , 2003, “Electrochemical Behavior of Ti/Al2O3 Interfaces Produced by Diffusion Bonding,” Mater. Res., 6(4), pp. 439–444. [CrossRef]
Chen, S. D. , Soh, A. K. , and Ke, F. J. , 2005, “Molecular Dynamics Modeling of Diffusion Bonding,” Scr. Mater., 52(11), pp. 1135–1140. [CrossRef]
King, W. H. , and Owczarski, W. A. , 1967, “Diffusion Welding of Commercially Pure Titanium,” Weld. J. Res. Suppl., 46, p. 289.
Hill, A. , and Wallach, E. , 1989, “Modeling Solid-State Diffusion Bonding,” Acta Metall., 37(9), pp. 2425–2437. [CrossRef]
Derby, B. , and Wallach, E. R. , 1984, “Diffusion Bonding: Development of Theoretical Model,” Met. Sci., 18(9), pp. 427–431. [CrossRef]
Pilling, J. , 1988, “The Kinetics of Isostatic Diffusion Bonding in Superplastic Materials,” Mater. Sci. Eng., 100, pp. 137–144. [CrossRef]
Pilling, J. , and Ridley, N. , 1987, “Solid State Bonding of Superplastic AA 7475,” Mater. Sci. Technol., 3(5), pp. 353–359. [CrossRef]
Livesey , D. , and Ridley , N. , 1991, “Diffusion Bonding of Superplastic Aluminium Alloys Using a Transient Liquid Phase Interlayer (Zinc),” Diffusion Bonding, Vol. 2, Springer, Switzerland, pp. 83–100.
Takahashi, Y. , Ueno, F. , and Nishiguchi, K. , 1988, “A Numerical Analysis of the Void-Shrinkage Process Controlled by Surface-Diffusion,” Acta Metall., 36(11), pp. 3007–3018. [CrossRef]
Shirzadi, A. A. , and Wallach, E. R. , 1999, “Analytical Modeling of Transient Liquid Phase (TLP) Diffusion Bonding When a Temperature Gradient Is Imposed,” Acta Metall., 47(13), pp. 3551–3560.
Zhou, Y. , Gale, W. F. , and North, T. H. , 1995, “Modeling of Transient Liquid Phase Bonding,” Int. Mater. Rev., 40(5), pp. 181–196. [CrossRef]
Nakagawa, H. , Lee, C. H. , and North, T. H. , 1991, “Modeling of Base Metal Dissolution Behavior During Transient Liquid-Phase Brazing,” Metall. Trans. A, 22A(2), pp. 543–555. [CrossRef]
Barnes, A. J. , 2007, “Superplastic Forming 40 Years and Still Growing,” J. Mater. Eng. Perform., 16(4), pp. 440–454. [CrossRef]
Wood, P. , Qarni, M. J. , Blackwell, P. , Cerny, V. , Brennand, P. , Wilkinson, S. , and Rosochowski , 2013, “Modeling the Super Plastic Forming of a Multi- Sheet Diffusion Bonded Titanium Alloy Demonstrator Fan Blade,” Mater. Sci. Forum, 838-839, pp. 215–223.
Padron, T. , Khan, T. I. , and Kabir, M. J. , 2004, “Modeling the Transient Liquid Phase Bonding Behavior of a Duplex Stainless Steel Using Copper Interlayers,” Mater. Sci.Eng. A, 385(1–2), pp. 220–228. [CrossRef]
MacDonald, W. D. , and Eagar, T. W. , 1992, “Transient Liquid Phase Bonding,” Annu. Rev. Mater. Sci., 22(1), pp. 23–46. [CrossRef]
Liu, S. , Xu, K. , Liu, G. , Cao, C. , and Heng, Z. , 2013, “The Evolution Characteristics and Numerical Analysis of Diffusion Bonding Interface Structure of Titanium Alloy/Cu/Stainless Steel,” Adv. Mater. Sci., 33, pp. 224–231. http://www.ipme.ru/e-journals/RAMS/no_33313/04_333_liu.pdf.
Wikstrom, N. P. , 2006, “The Effect of Process Parameters on Microstructure of Transient Liquid Phase Bonded Superalloys Inconel 738 and Waspaloy,” Ph.D. dissertation, University of Manitoba, Winnipeg, MB, Canada.
Kuntz, M. L. , 2006, “Quantifying Isothermal Solidification Kinetics During Transient Liquid Phase Bonding Using Differential Scanning Calorimetry,” Ph. D dissertation, University of Waterloo, ON, Canada. http://hdl.handle.net/10012/890

Figures

Grahic Jump Location
Fig. 1

Example from the Audi Q7 body structure showing the varied joining approaches to treat varied materials and topologies. From top left and around, acronyms refer to Flow Drilling Screws, Friction Element Welds, Stainless Steel Rivets, Self-Piercing Rivets, Spot Welding, Metal Inert Gas, and Metal Active Gas Welding. (Reprinted with permission from Dr. Uwe Alber, Audi AG © 2018).

Grahic Jump Location
Fig. 2

Schematic illustration of friction welding processes: (a) direct drive rotary welding (Reprinted with permission from [5], copyright 2016 Taylor & Francis), (b) inertia drive rotary welding (Reprinted with permission from TWI Ltd.), and (c) linear welding (Reprinted with permission from [13], copyright 2012 Taylor & Francis)

Grahic Jump Location
Fig. 3

FSBW configuration of dissimilar metals with various tool offset: (a) positive tool offset where FSW tool is inserted into the hard metal, (b) zero offset where FSW tool is barely in contact with the faying surface of the hard metal, and (c) negative tool offset where FSW tool is completed plunged into the soft metal

Grahic Jump Location
Fig. 4

FSLW of (a) and (b) dissimilar Al alloys, and (c) dissimilar metals (e.g., Al and steel). Note the difference in the plunge depth into the bottom plate between dissimilar Al alloys and dissimilar metals.

Grahic Jump Location
Fig. 5

(a) Schematic showing the thermocouple locations. Thermal profiles for welds in (b) air and (c) liquid N2 (Reprinted with permission from [43], copyright 2014 Springer Nature).

Grahic Jump Location
Fig. 6

Overall bonding mechanisms and microstructural evolution in Al and Mg dissimilar welds

Grahic Jump Location
Fig. 8

Schematic illustration of joining mechanism in Al–Fe when steel is (a) on AS and (b) on RS. (c)–(f) Various stages of weld formation mechanism.

Grahic Jump Location
Fig. 10

Wire bonding: the bond head is finishing the second bond on a Cu substrate [112]

Grahic Jump Location
Fig. 9

A schematic of USMW system [133]

Grahic Jump Location
Fig. 7

(a) Asymmetric temperature distribution and (b) material flow behavior.

Grahic Jump Location
Fig. 12

Schematic of high-speed camera setup: (a) workpiece stack-up aligned with horn (side view) and (b) displacement measurement of metal layer (front view)

Grahic Jump Location
Fig. 13

scanning electron microscope (SEM) BSE images of the early stages of microbond formation: In (c), examples are shown of the progressive rotation of an isolated microbond out of plane, along with a schematic diagram (d) of how this could be caused by a net shear displacement at the weld interface (Reprinted with permission from [122], copyright 2010 Elsevier)

Grahic Jump Location
Fig. 14

Sectioned and etched three Al layers, observed under optical microscope. The Cu layer is not shown (Reprinted with permission from [126], copyright 2014 Elsevier).

Grahic Jump Location
Fig. 11

Thin film microsensor design layouts with 4 thin-film thermocouples and 1 thin-film thermopile

Grahic Jump Location
Fig. 15

SEM (left) and transmission electron microscope (TEM) (right) images of the IMC reaction layers seen in the AA6111-DC04 steel welds (a) and (b) after a short 0.3 s, and (c) and (d) medium 1.5 s welding times. In (e) and (f), a comparison is provided to the equivalent AA7055-DC04 steel welds after a welding time of 1.5 s. In the TEM images, the dashed lines indicate the interfaces between different phases. (Reprinted with permission from [123], copyright 2016 Springer Nature).

Grahic Jump Location
Fig. 18

Ultrasonic welding process simulation results for four-layered Al/Cu sheets

Grahic Jump Location
Fig. 16

Relationship between microhardness and welding zones: (a) a schematic diagram of ultrasonically welded joint, (b) microhardness profile of the weld interface, and (c) hardness profile outside of weld zone [129]

Grahic Jump Location
Fig. 20

Schematic of MPW process

Grahic Jump Location
Fig. 19

Explosive welding illustration

Grahic Jump Location
Fig. 21

Schematic of VFAW process: (a) vaporization of the foil actuator, (b) welding stack up, also shown is the PDV probe for measuring flyer velocity, and (c) VFAW process schematic depicting unwelded region in region of flat impact

Grahic Jump Location
Fig. 22

Schematic of the laser impact welding process

Grahic Jump Location
Fig. 23

Voltage and velocity measurements from a VFAW experiment. Flyer velocity of 800 m/s reached within 5 μs of foil burst.

Grahic Jump Location
Fig. 26

A thin, amorphous reaction zone at the interface of aluminum/steel MPW sample (Reprinted with permission from [209], copyright 2015 AIP Publishing)

Grahic Jump Location
Fig. 24

Wavy interfaces with various material combinations and impact welding processes (Reprinted with permission from [153] from Dr. Koen Faes of Belgian Welding Institute 2010 and from [173] from Curtis Prothe of Nobelclad 2016).

Grahic Jump Location
Fig. 25

Hierarchical microstructure of titanium-steel interface [173]

Grahic Jump Location
Fig. 27

Tested samples from (a) shear test, (b) cantilever bend test, and (c) clad tensile plate test (Reprinted with permission from [173], from Curtis Prothe of Nobelclad 2016)

Grahic Jump Location
Fig. 30

Interfacial failure process where “A” indicates crack initiation sites at the GBs due to slipping bands invading against GBs and “B” indicates sites having intergranular cracks (Reprinted with permission from [238], copyright 2007 Elsevier)

Grahic Jump Location
Fig. 28

Impact welding window based on impact velocity and angle along with various types of interfaces formed depending on the conditions [199]

Grahic Jump Location
Fig. 29

Diffusion bonding mechanism (Reprinted with permission from [209], copyright 2014 John Wiley and Sons)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In