Modeling and Experimental Validation of Superconductor Tape Rolling

[+] Author and Article Information
M. Pandheeradi, S. P. Vaze, D.-W. Yuan

Concurrent Technologies Corporation (CTC), 100 CTC Drive, Johnstown, PA 15904-1935

H. A. Kuhn

C3 Industries LLC, 1525 Charleston Hwy, Orangeburg, SC 29116-2569

J. Manuf. Sci. Eng 123(4), 665-673 (Aug 01, 2000) (9 pages) doi:10.1115/1.1371929 History: Received October 01, 1999; Revised August 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Selvamanickam,  V., Hazelton,  D. W., Motowidlo,  L., Krajula,  F., Hoehn,  J., Walker,  M. S., and Haldar,  P., 1998, “High-Temperature Superconductors for Electric Power and High-Energy Physics,” J. Met., 50(10), pp. 27–30.
Herrmann, P. F., Béghin, E., Duperray, G., Grivon, F., Legat, D., Leriche, A., Tavergnier, P. J., Marlin, P., and Parasie, Y., 1998, “Pre-Industrial PIT Conductor and Coil Development at Alcatel,” presented at the Applied Superconductivity Conference, Desert Springs, CA.
Zeng,  R., Beales,  T. P., Liu,  H. K., and Dou,  S. X., 1998, “Optimal Reduction in Rolling Ag-Sheathed Bi-2223 Multifilamentary Tapes,” Supercond. Sci. Technol., 9, pp. 299–303.
Yuan,  D.-W., Majer,  W. J., and Francarilla,  T. L., 2000, “Fabrication of Laminated Bi-2212/Ag Multifilamentary Tape,” Supercond. Sci. Technol., 13, pp. 287–290.
Blumenthal,  W. R., Zhu,  Y. T., Lowe,  T. C., and Asaro,  R. J., 1996, “Deformation State Effects on the Jc of BSCCO Tapes,” Physica C, 260, pp. 33–40.
Asaro,  R. J., Ahzi,  S., Blumenthal,  W. R., and DiGiovanni,  A., 1992, “Mechanical Processing of High Jc BSCCO Superconductors,” Philos. Mag. A, 66, No. 4, pp. 517–538.
Schoenfeld,  S. E., Ahzi,  S., Asaro,  R. J., and Blumenthal,  W. R., 1996, “The Bulk Processing of 2223 BSCCO Powders: Part I: Densification and Mechanical Response,” Philos. Mag. A, 73, No. 6, pp. 1565–1590.
Schoenfeld,  S. E., Asaro,  R. J., Ahzi,  S., Bingert,  J. F., and Willis,  J. O., 1996, “The Bulk Processing of 2223 BSCCO Powders: Part II: Tape Rolling,” Philos. Mag. A, 73, No. 6, pp. 1591–1620.
Korzekwa,  D. A., Bingert,  J. F., Podtburg,  E. J., and Miles,  P., 1994, “Deformation Processing of Wires and Tapes Using the Oxide-Powder-in-Tube Method,” Appl. Supercond., 2, No. 3/4, pp. 261–270.
Kovac,  P., Husek,  I., and Pachla,  W., 1997, IEEE Trans. Appl. Supercond., 7, p. 2098.
Han,  Z., Skov-Hansen,  P., and Freltof,  T., 1997, “The Mechanical Deformation of Superconducting BiSrCaCuO/Ag Composites,” Supercond. Sci. Technol., 10, pp. 371–387.
Yuan,  D.-W., Aesoph,  M. D., and Kajuch,  J., 1997, “Influence of Powder Characteristics on the Green Compacts of Bi-2212 Powders,” J. Mater. Res., 12(1), pp. 21–27.
Sengupta,  S., 1998, “High-Temperature Superconductors: Synthesis Techniques and Application Requirements,” J. Met., 50(10), pp. 19–26.
Yuan, D.-W., Pollock, M. J., and Kajuch, J., 1997, “Effective Fabrication Practices for Ag-Sheathed Bi-2212 Superconductors,” High-Temperature Superconductors: Synthesis, Processing, and Applications II, (Orlando, FL), U. Balachandran and P. J. McGinn, eds., TMS, pp. 35–42.
Yuan,  D.-W., and Kajuch,  J., 1998, “Process Optimization for Ag-Sheathed Bi-2212 Superconductors,” J. Supercond., 11(5), pp. 569–573.
Funahashi,  R., Matsubara,  I., Ueno,  K., and Ishikawa,  H., 1999, “Mechanism of Bi2Sr2CaCu2Ox Crystallization and Superconducting Properties for Bi2Sr2CaCu2Ox/Ag Tapes Prepared Using Isothermal Partial Melting Method,” Physica C, 311, pp. 107–121.
Shivpuri,  R., and Chou,  P. C., 1989, “A Comparative Study of Slab, Upper Bound and Finite Element Methods for Predicting Force and Torque in Cold Rolling,” Int. J. Mach. Tools Manuf., 29, pp. 305–322.
Lee,  J. D., 1998, “A Large-Strain Elastic-Plastic Finite Element Analysis of Rolling Process,” Comput. Methods Appl. Mech. Eng., 161, pp. 315–347.
Yuan,  D.-W., Pollock,  M. J., and Kajuch,  J., 1997, “Drawing of Ag-Clad Bi2Sr2CaCu2O8 Superconductor Wires,” Supercond. Sci. Technol., 10, pp. 52–57.
Tangrila, S., Shah, R., and Rachakonda, S., 1995, “Densification Behavior of BSCCO-2212 Superconducting Powder During the Wire Drawing of Powder-in-Tube (PIT) Samples,” AMD-Vol. 216, Net Shape Processing of Powder Materials, ASME, pp. 129–140.
Pandheeradi, M., 1996, “Modeling the Superconductor Wire Drawing Process,” Bi-2212 High Temperature Superconductor Manufacturing Technology Development Workshop, Concurrent Technologies Corporation, Johnstown, PA.
Kajuch, J., Yuan, D. W., Pandheeradi, M., Pollock, M., Aesoph, M., and Thirukkonda, M., 1997, “Manufacturing Technology of Monofilament Bi-2212 Wires and Tapes,” NCEMT Report.
Hibbitt, Karlsson and Sorensen, Inc., 1997, ABAQUS Theory Manual, Version 5.7.
Hibbitt, H. D., 1984, Nucl. Eng. Des., Vol. 77, pp. 271-297.
Yuan,  D.-W., Pollock,  M. J., and Kajuch,  J., 1998, “Effect of Rolling on Properties of Monofilamentary Bi-2212 Superconductor Tapes,” Physica C, 302, pp. 1–9.


Grahic Jump Location
Schematic of the powder-in-tube (PIT) process
Grahic Jump Location
Transverse cross section of tape and geometric parameters
Grahic Jump Location
Longitudinal cross section of tape at final size
Grahic Jump Location
Schematic of model in the 1-2 plane, perpendicular to the wire axis or rolling direction (NOT TO SCALE)
Grahic Jump Location
3D Finite element mesh on superconducting wire
Grahic Jump Location
Schematic of Case 1 model in 2-3 plane
Grahic Jump Location
Schematic of Case 2 model in the 2-3 plane
Grahic Jump Location
Volumetric hardening curve for Bi-2212 powder
Grahic Jump Location
Material data for high-purity silver sheath
Grahic Jump Location
Effect of rolling parameters on tape width
Grahic Jump Location
Schematic of roll and tape positions for first and fifth rolling passes (Case 1) (NOT TO SCALE)
Grahic Jump Location
Comparison of tape C/s geometry parameters—experiment vs. prediction
Grahic Jump Location
Distribution of frictional stress in the direction of roll motion (Units: MPa, Case 1, Pass 5)
Grahic Jump Location
Distribution of frictional stress in the direction of roll motion (Units: MPa, Case 2, Pass 5)
Grahic Jump Location
Frictional stress along direction of rolling along the symmetry plane



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In