Tool Life Distributions—Part 3: Mechanism of Single Injury Tool Failure and Tool Life Distribution in Interrupted Cutting

[+] Author and Article Information
S. Ramalingam

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga.

Y. I. Peng

State University of New York, Buffalo, N.Y.

J. D. Watson

BHP Melbourne Research Laboratory, Clayton, Victoria, Australia

J. Eng. Ind 100(2), 193-200 (May 01, 1978) (8 pages) doi:10.1115/1.3439409 History: Received August 01, 1977; Online July 15, 2010


Tool life distribution under production machining conditions must be suitably accounted for in any rational design of large volume or automated machining lines. Reliable data on the type of distributions likely to be encountered are, however, unavailable. To remedy this, using relevent physical arguments, probabilistic models of tool failure which produce distribution functions germane to tool life scatter have been proposed and developed in earlier parts of this paper. An arbitrarily introduced hazard function was used to predict the life distributions likely to be obtained. The details of the mechanisms giving rise to tool failure were, however, not examined. Mechanistic questions connected with the single-injury tool failure (tool fracture) are examined in this part. The arbitrarily introduced hazard function is shown to have a physical basis. It is shown that the hazard function is determined by the interaction between the characteristics of the environment in which the tool operates and the mechanical properties of the tool material. The concepts outlined and the mechanistic model of tool failure proposed have been tested experimentally in interrupted cutting. It is shown that the predicted Weibull-distributed tool life is obtained when tool failure is due to a single injury and that the parameters of the Weibull distribution are governed by the properties of the tool material as well as those of the machining system.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In