Flank Wear Model of Cutting Tools Using Control Theory

[+] Author and Article Information
Y. Koren

Technion–Israel Institute of Technology, Haifa, Israel

J. Eng. Ind 100(1), 103-109 (Feb 01, 1978) (7 pages) doi:10.1115/1.3439336 History: Received July 25, 1977; Online July 15, 2010


A model of the flank wear of cutting tools is developed by using linear control theory. The flank wear is assumed to consist of a mechanically activated and a thermally activated component. The wear process is mathematically treated as a feedback process, whereby the progressive wear raises the cutting forces and temperature thereby increasing the thermally activated wear-rate, and contributes to the mechanically activated wear. A mathematical expression for the flank wear growth is derived and shown to be consistent with experimental results. The experimental data is fitted to the wear model for calculating the mechanical wear coefficient and activation energy for the thermally activated wear. The model yielded a new tool-life equation which is valid over a wider range of speed than Taylor tool-life equation.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In