Surface Integrity in Machining AISI 4340 Steel

[+] Author and Article Information
J. A. Bailey

Mechanical Engineering, North Carolina State University, Raleigh, N. C.

S. Jeelani

Mechanical Engineering, Tuskegee Institute, Tuskegee, Ala.

S. E. Becker

Mechanical Engineering, University of Tennessee, Knoxville, Tenn.

J. Eng. Ind 98(3), 999-1006 (Aug 01, 1976) (8 pages) doi:10.1115/1.3439063 History: Received July 28, 1975; Online July 15, 2010


The effect of cutting speed and tool wear land length on the surface integrity of quenched and tempered AISI 4340 steel machined under dry, unlubricated orthogonal conditions is determined. The surface region of machined test pieces is examined using optical microscopy, scanning electron microscopy, X-ray microprobe analysis, microhardness measurements, and profilometry. In addition, tool forces are measured and tool temperatures calculated. The results of the investigation show that during machining a damaged surface region is produced which is quite different from the bulk of the material. It is found when cutting at low speeds with sharp cutting tools that the damage is restricted to a variety of geometrical defects associated with the surface. It is found when cutting at high speeds or with tools having large artificially controlled wear lands that considerable subsurface damage involving changes in metallurgical structure and hardness is produced. The results are interpreted in terms of the type of chip produced during machining, the temperatures generated during machining, and the interaction between the tool nose region and workpiece. It is suggested that observations based on scanning electron microscopy are more indicative of the true surface condition than surface roughness measurements.

Copyright © 1976 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In