Spherical Shell Sector Acrylic Plastic Windows with 12,000 ft Operational Depth for Submersible Alvin

[+] Author and Article Information
J. D. Stachiw

Ocean Technology Dept., Naval Undersea Center, San Diego, Calif.

R. Sletten

Det Norske Veritas, Oslo, Norway

J. Eng. Ind 98(2), 523-536 (May 01, 1976) (14 pages) doi:10.1115/1.3438932 History: Received July 31, 1975; Online July 15, 2010


It has been found that the 90-deg plane conical frustum windows with t/Di = 0.7 ratio in ALVIN submersible can be replaced with 90-deg t/Di = 1 spherical shell sector windows without any modification of window seat flanges. The 90-deg spherical shell sector windows with t/Di = 1.0 possess not only a higher short term critical pressure but also develop more uniform stress distribution during a typical dive to 12,000 ft than the t/Di = 0.7 acrylic conical frustum windows that they replace. The 90-deg t/Di = 1.0 spherical shell sector windows (1) withstood, without catastrophic failure, 100 hr sustained loading to 20,000 psi, (2) 33 pressure cycles of 7-hr duration to 13,500 ft depth without any signs of fatigue, and (3) experienced less than 15,000 μin. strain during a simulated typical prooftest dive to 13,500 ft depth. The 90-deg t/Di = 1 spherical shell sector window presents a 50 percent larger view in water than a 90-deg t/Di = 0.7 conical frustum window that it replaces. This permits the observer inside the submersible to cover visually more ocean bottom during a single pass along the bottom and thus decreases the cost of a typical bottom search mission for a submersible.

Copyright © 1976 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In