Mechanics and Dynamics of Ball End Milling

[+] Author and Article Information
Y. Altıntaş, P. Lee

Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada

J. Manuf. Sci. Eng 120(4), 684-692 (Nov 01, 1998) (9 pages) doi:10.1115/1.2830207 History: Received December 01, 1995; Revised August 01, 1997; Online January 23, 2008


Mechanics and dynamics of cutting with helical ball end mills are presented. The helical ball end mill attached to the spindle is modelled by orthogonal structural modes in the feed and normal directions at the tool tip. For a given cutter geometry, the cutting coefficients are transformed from an orthogonal cutting data base using an oblique cutting model. The three dimensional swept surface by the cutter is digitized using the true trochoidal kinematics of ball end milling process in time domain. The dynamically regenerated chip thickness, which consists of rigid body motion of the tooth and structural displacements, is evaluated at discrete time intervals by comparing the present and previous tooth marks left on the finish surface. The process is simulated in time domain by considering the instantaneous regenerative chip load, local cutting force coefficients, structural transfer functions and the geometry of ball end milling process. The proposed model predicts cutting forces, surface finish and chatter stability lobes, and is verified experimentally under both static and dynamic cutting conditions.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In