Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 1: Concept of Generalized Modelling

[+] Author and Article Information
S. Fraser, M. H. Attia, M. O. M. Osman

Department of Mechanical Engineering, Concordia University, Montreal, Quebec, Canada

J. Manuf. Sci. Eng 120(3), 623-631 (Aug 01, 1998) (9 pages) doi:10.1115/1.2830167 History: Received May 01, 1995; Revised June 01, 1997; Online January 17, 2008


With the increasing demand for improved machining accuracy in recent years, the problem of thermal deformation of machine tool structures is becoming more critical than ever. In spite of the effort for improving the thermal deformation characteristics of machine tools at the design stage, there are always some residual errors that have to be compensated for during machining. The design of a generic multi-axis control system requires the development of two models to estimate the transient thermal load and to estimate the thermal deformation of the structure in real-time. To satisfy the stringent accuracy and stability requirements of these two models, a new concept of “generalized modelling” is introduced. It combines mathematical modelling with empirical calibration, and is based on the existence of a mathematical similarity between the real process and a simplified model, referred to as the fundamental generalized problem FGP. To obtain an analytical description of the heat transfer and thermal deformation processes in machine tool structures, an analytical solution of the FGP, which consists of an infinite plate with a central ring heat source, is derived using Hankel transformation. Computer-simulated test cases are presented to demonstrate the use of generalized modelling for predicting the transient thermal response in a complex machine tool structure. It was also shown how the generalized model can accurately extrapolate limited measurement data to predict the entire temperature field. The results confirmed that the generalized model can reproduce the accuracy of the finite-element solution, but two orders of magnitude faster.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In