Dynamics of Spindle-Bearing Systems at High Speeds Including Cutting Load Effects

[+] Author and Article Information
Bert R. Jorgensen, Yung C. Shin

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Manuf. Sci. Eng 120(2), 387-394 (May 01, 1998) (8 pages) doi:10.1115/1.2830138 History: Received February 01, 1996; Revised March 01, 1997; Online January 17, 2008


Increased use of high speed machining creates the need to predict spindle-bearing performance at high speeds. Previous spindle-bearing models simplify either spindle or bearing dynamics to the extent of prohibiting a detailed analysis of a spindle with high speed motion. At high speeds, centrifugal loading in the bearing causes stiffness softening, creating a change in natural frequency. Therefore, spindle modeling requires a comprehensive representation of the dynamics of shafts with complex geometry rotating at high speeds and supported by non-linear bearings. This paper presents a coupled system of spindle and bearing dynamic models with numerical solution. Spindle dynamics are modeled using the influence coefficient method of discrete lumped masses, based on Timoshenko beam theory. Both linear and rotational bearing stiffness are included in the spindle model through solution of the angular-contact bearing model. The parameters of cutting loads, tool mass, and rotational speed are analyzed, and all are shown to affect the natural frequency. The computer model is both rapid and robust, and shows excellent agreement with experimental analysis.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In