The Importance of Including Size Effect When Modeling Slot Milling

[+] Author and Article Information
S. N. Melkote, W. J. Endres

Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois

J. Manuf. Sci. Eng 120(1), 68-75 (Feb 01, 1998) (8 pages) doi:10.1115/1.2830112 History: Received April 01, 1994; Revised August 01, 1996; Online January 17, 2008


This paper presents a detailed mechanistic force analysis that includes size effect for slot milling operations. Existing studies of the milling process have modeled the slot end milling operation as a simple geometric extension of peripheral end milling models with constant values for the specific energies used to predict forces for a given cutter geometry and cutting conditions. This paper addresses the limitations of this approach for accurate predictions of the instantaneous cutting force variation, particularly for steady-state slotting with four-flute cutters. It is shown through a comparison of model simulations and experimental results that significantly improved predictions of the cutting force variation are obtained by properly accounting for the size effect in slotting. The dependence of the cutting force variation on axial depth of cut and helix angle is demonstrated. Practical implications of selecting helix angle and axial depth of cut based on the improved slot end milling model are also discussed. Modeling approaches other than the mechanistic approach considered here are also noted in this light.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In