Modeling of Tool Forces for Worn Tools: Flank Wear Effects

[+] Author and Article Information
S. Elanayar, Y. C. Shin

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Manuf. Sci. Eng 118(3), 359-366 (Aug 01, 1996) (8 pages) doi:10.1115/1.2831037 History: Received October 01, 1993; Revised June 01, 1995; Online January 17, 2008


A general procedure for the separation of ploughing forces from shearing forces on the shear plane is outlined. The first part of the paper deals with the experimental separation of these forces using the predictive machining theory developed by Oxley. The forces are decomposed by first separating the shear forces from the total forces and then employing an iterative procedure to calculate the normal forces on the shear plane. All analysis is conducted for three dimensional cutting. The second part of the paper develops a procedure to model the ploughing forces by accounting for the change in geometry with flank wear. The procedure uses the indentation models along with values of tool and workpiece material constants to determine the indentation force. Models for the indentation depth are developed from a few designed experiments and the predictions by the established models are then compared with experimental results obtained for different cutting conditions. The theoretical predictions of the ploughing forces agree closely with results of the experiments. Additional analysis using ceramic tools also show reasonably good agreement between predictions and experimental measurements.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In