Research Papers

Fabrication of Microfluidic Manifold by Precision Extrusion Deposition and Replica Molding for Cell-Laden Device

[+] Author and Article Information
Jessica Snyder

Mechanical Engineering and
Mechanics Department,
Drexel University,
3141 Chestnut Street,
Philadelphia, PA 19104
e-mail: jes592@drexel.edu

Ae Rin Son

Mechanical Engineering and
Mechanics Department,
Drexel University,
3141 Chestnut Street,
Philadelphia, PA 19104
e-mail: as3266@drexel.edu

Qudus Hamid

Mechanical Engineering and
Mechanics Department,
Drexel University,
3141 Chestnut Street,
Philadelphia, PA 19104
e-mail: qh25@drexel.edu

Wei Sun

Mechanical Engineering and
Mechanics Department,
Drexel University,
3141 Chestnut Street,
Philadelphia, PA 19104;
Department of Mechanical Engineering,
Tsinghua University,
Beijing, China
e-mail: sunwei@drexel.edu

1Corresponding author.

Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received March 5, 2015; final manuscript received August 26, 2015; published online October 27, 2015. Assoc. Editor: Yong Huang.

J. Manuf. Sci. Eng 138(4), 041007 (Oct 27, 2015) (11 pages) Paper No: MANU-15-1103; doi: 10.1115/1.4031551 History: Received March 05, 2015; Revised August 26, 2015

A PED (precision extrusion deposition)/replica molding process enables scaffold guided tissue engineering of a heterocellular microfluidic device. We investigate two types of cell-laden devices: the first with a 3D microfluidic manifold fully embedded in a PDMS (polydimethylsiloxane) substrate and the second a channel network on the surface of the PDMS substrate for cell printing directly into device channels. Fully embedded networks are leak-resistant with simplified construction methods. Channels exposed to the surface are used as mold to hold bioprinted cell-laden matrix for controlled cell placement throughout the network from inlet to outlet. The result is a 3D cell-laden microfluidic device with improved leak-resistance (up to 2.0 mL/min), pervasive diffusion and control of internal architecture.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Shuler, M. L. , Viravaidya, K. , and Sin, A. , 2004, “ Development of a Microscale Cell Culture Analog to Probe Naphthalene Toxicity,” Biotechnol. Prog., 20(1), pp. 316–323. [PubMed]
Jensen, K. F. , El-Ali, J. , and Sorger, P. K. , 2006, “ Cells on Chips,” Nature, 442(7101), pp. 403–411. [CrossRef] [PubMed]
Dickson, M. , and Gagnon, J. P. , 2004, “ Key Factors in the Rising Cost of New Drug Discovery and Development,” Nat. Rev. Drug Discovery, 3(5), pp. 417–429. [CrossRef]
van Midwoud, P. M. , Verpoorte, E. , and Groothuis, G. M. M. , 2011, “ Microfluidic Devices for In Vitro Studies on Liver Drug Metabolism and Toxicity,” Integr. Biol., 3(5), pp. 509–521. [CrossRef]
Griffith, L. G. , Sivaraman, A. , Leach, J. K. , Townsend, S. , Iida, T. , Hogan, B. J. , Stolz, D. B. , Fry, R. , Samson, L. D. , and Tannenbaum, S. R. , 2005, “ A Microscale In Vitro Physiological Model of the Liver: Predictive Screens for Drug Metabolism and Enzyme Induction,” Curr. Drug Metab., 6(6), pp. 569–591. [CrossRef] [PubMed]
Brandon, E. F. A. , Raap, C. D. , Meijerman, I. , Beijnen, J. H. , and Schellens, J. H. M. , 2003, “ An Update on In Vitro Test Methods in Human Hepatic Drug Biotransformation Research: Pros and Cons,” Toxicol. Appl. Pharmacol., 189(3), pp. 233–246. [CrossRef] [PubMed]
Cheng, K. C. , Maguire, T. J. , Novik, E. , Chao, P. , Barminko, J. , Nahmias, Y. , and Yarmush, M. L. , 2009, “ Design and Application of Microfluidic Systems for In Vitro Pharmacokinetic Evaluation of Drug Candidates,” Curr. Drug Metab., 10(10), pp. 1192–1199. [CrossRef] [PubMed]
Wu, M. H. , Huang, S. B. , and Lee, G. B. , 2010, “ Microfluidic Cell Culture Systems for Drug Research,” Lab Chip, 10(8), pp. 939–956. [CrossRef] [PubMed]
Kim, S. , and Marimuthu, M. , 2011, “ Microfluidic Cell Coculture Methods for Understanding Cell Biology, Analyzing Bio/Pharmaceuticals, and Developing Tissue Constructs,” Anal. Biochem., 413(2), pp. 81–89. [CrossRef] [PubMed]
Yeo, L. Y. , Chang, H. C. , Chan, P. P. , and Friend, J. R. , 2011, “ Microfluidic Devices for Bioapplications,” Small, 7(1), pp. 12–48. [CrossRef] [PubMed]
Whitesides, G. M. , Siegel, A. C. , Tang, S. K. Y. , Nijhuis, C. A. , Hashimoto, M. , Phillips, S. T. , and Dickey, M. D. , 2010, “ Cofabrication: A Strategy for Building Multicomponent Microsystems,” Accounts Chem. Res., 43(4), pp. 518–528. [CrossRef]
Buyukhatipoglu, K. , Chang, R. , Sun, W. , and Clyne, A. M. , 2010, “ Bioprinted Nanoparticles for Tissue Engineering Applications,” Tissue Eng., Part C, 16(4), pp. 631–642. [CrossRef]
Walker, G. M. , Zeringue, H. C. , and Beebe, D. J. , 2004, “ Microenvironment Design Considerations for Cellular Scale Studies,” Lab Chip, 4(2), pp. 91–97. [CrossRef] [PubMed]
Rouwkema, J. , Rivron, N. C. , and van Blitterswijk, C. A. , 2008, “ Vascularization in Tissue Engineering,” Trends Biotechnol., 26(8), pp. 434–441. [CrossRef] [PubMed]
Song, J. W. , Cavnar, S. P. , Walker, A. C. , Luker, K. E. , Gupta, M. , Tung, Y. C. , Luker, G. D. , and Takayama, S. , 2009, “ Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells,” PLoS ONE, 4(6), p. e5756. [CrossRef] [PubMed]
Takayama, S. , Hsiao, A. Y. , Torisawa, Y. S. , Tung, Y. C. , Sud, S. , Taichman, R. S. , and Pienta, K. J. , 2009, “ Microfluidic System for Formation of PC-3 Prostate Cancer Co-Culture Spheroids,” Biomaterials, 30(16), pp. 3020–3027. [CrossRef] [PubMed]
Kong, B. H. , Song, X. Y. , and Li, D. , 2008, “ A New Tool for Probing of Cell–Cell Communication: Human Embryonic Germ Cells Inducing Apoptosis of SKOV3 Ovarian Cancer Cells on a Microfluidic Chip,” Biotechnol. Lett., 30(9), pp. 1537–1543. [CrossRef] [PubMed]
Cheng, K. C. , Novik, E. , Maguire, T. J. , Chao, P. Y. , and Yarmush, M. L. , 2010, “ A Microfluidic Hepatic Coculture Platform for Cell-Based Drug Metabolism Studies,” Biochem. Pharmacol., 79(7), pp. 1036–1044. [CrossRef] [PubMed]
Kamm, R. D. , Sudo, R. , Chung, S. , Zervantonakis, I. K. , Vickerman, V. , Toshimitsu, Y. , and Griffith, L. G. , 2009, “ Transport-Mediated Angiogenesis in 3D Epithelial Coculture,” FASEB J., 23(7), pp. 2155–2164. [CrossRef] [PubMed]
Bornens, M. , Thery, M. , Racine, V. , Pepin, A. , Piel, M. , Chen, Y. , and Sibarita, J. B. , 2005, “ The Extracellular Matrix Guides the Orientation of the Cell Division Axis,” Nat. Cell Biol., 7(10), pp. 947–953. [CrossRef] [PubMed]
Dababneh, A. B. , and Ozbolat, I. T. , 2014, “ Bioprinting Technology: A Current State-of-the-Art Review,” ASME J. Manuf. Sci. Eng., 136(6), p. 061016. [CrossRef]
Yu, Y. , Zhang, Y. H. , and Ozbolat, I. T. , 2014, “ A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication,” ASME J. Manuf. Sci. Eng., 136(6), p. 061013. [CrossRef]
Huang, Y. , Leu, M. C. , Mazumder, J. , and Donmez, A. , 2015, “ Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations,” ASME J. Manuf. Sci. Eng., 137(1), p. 014001. [CrossRef]
Sun, W. , Starly, B. , Darling, A. , and Gomez, C. , 2004, “ Computer-Aided Tissue Engineering: Application to Biomimetic Modelling and Design of Tissue Scaffolds,” Biotechnol. Appl. Biochem., 39(Pt 1), pp. 49–58. [CrossRef] [PubMed]
Hamid, Q. , Wang, C. , Zhao, Y. , Snyder, J. , and Sun, W. , 2014, “ A Three-Dimensional Cell-Laden Microfluidic Chip for In Vitro Drug Metabolism Detection,” Biofabrication, 6(2), p. 025008. [CrossRef] [PubMed]
Pennella, F. , Cerino, G. , Massai, D. , Gallo, D. , Falvo D'Urso Labate, G. , Schiavi, A. , Deriu, M. A. , Audenino, A. , and Morbiducci, U. , 2013, “ A Survey of Methods for the Evaluation of Tissue Engineering Scaffold Permeability,” Ann. Biomed. Eng., 41(10), pp. 2027–2041 [CrossRef] [PubMed]
Sachlos, E. , and Czernuszka, J. T. , 2003, “ Making Tissue Engineering Scaffolds Work. Review: the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds,” Eur. Cells Mater., 5, pp. 29–39; discussion 39–40.
Owen, S. C. , and Shoichet, M. S. , 2010, “ Design of Three-Dimensional Biomimetic Scaffolds,” J. Biomed. Mater. Res., Part A, 94A(4), pp. 1321–1331.
Sobral, J. M. , Caridade, S. G. , Sousa, R. A. , Mano, J. F. , and Reis, R. L. , 2011, “ Three-Dimensional Plotted Scaffolds With Controlled Pore Size Gradients: Effect of Scaffold Geometry on Mechanical Performance and Cell Seeding Efficiency,” Acta Biomater., 7(3), pp. 1009–1018. [CrossRef] [PubMed]
Oh, S. H. , Park, I. K. , Kim, J. M. , and Lee, J. H. , 2007, “ In Vitro and In Vivo Characteristics of PCL Scaffolds With Pore Size Gradient Fabricated by a Centrifugation Method,” Biomaterials, 28(9), pp. 1664–1671. [CrossRef] [PubMed]
Melchels, F. P. W. , Bertoldi, K. , Gabbrielli, R. , Velders, A. H. , Feijen, J. , and Grijpma, D. W. , 2010, “ Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography,” Biomaterials, 31(27), pp. 6909–6916. [CrossRef] [PubMed]
van der Meer, A. D. , and van den Berg, A. , 2012, “ Organs-on-Chips: Breaking the In Vitro Impasse,” Integr. Biol., 4(5), pp. 461–470. [CrossRef]
Hamid, Q. , Wang, C. , Snyder, J. , Williams, S. , Liu, Y. , and Sun, W. , 2015, “ Maskless Fabrication of Cell-Laden Microfluidic Chips With Localized Surface Functionalization for the Co-Culture of Cancer Cells,” Biofabrication, 7(1), p. 015012. [CrossRef] [PubMed]
Hamid, Q. , Wang, C. , Snyder, J. , and Sun, W. , 2015, “ Surface Modification of SU-8 for Enhanced Cell Attachment and Proliferation Within Microfluidic Chips,” ASME J. Biomed. Mater. Res., Part B, 103(2), pp. 473–484. [CrossRef]
Snyder, J. E. , Hunger, P. M. , Wang, C. , Hamid, Q. , Wegst, U. G. , and Sun, W. , 2014, “ Combined Multi-Nozzle Deposition and Freeze Casting Process to Superimpose Two Porous Networks for Hierarchical Three-Dimensional Microenvironment,” Biofabrication, 6(1), p. 015007. [CrossRef] [PubMed]
Snyder, J. E. , Hamid, Q. , Wang, C. , Chang, R. , Emami, K. , Wu, H. , and Sun, W. , 2011, “ Bioprinting Cell-Laden Matrigel for Radioprotection Study of Liver by Pro-Drug Conversion in a Dual-Tissue Microfluidic Chip,” Biofabrication, 3(3), p. 034112. [CrossRef] [PubMed]
Butscher, A. , Bohner, M. , Hofmann, S. , Gauckler, L. , and Muller, R. , 2011, “ Structural and Material Approaches to Bone Tissue Engineering in Powder-Based Three-Dimensional Printing,” Acta Biomater., 7(3), pp. 907–920. [CrossRef] [PubMed]
Mota, C. , Puppi, D. , Chiellini, F. , and Chiellini, E. , 2015, “ Additive Manufacturing Techniques for the Production of Tissue Engineering Constructs,” J. Tissue Eng. Regener. Med., 9(3), pp. 174–190. [CrossRef]
Rengier, F. , Mehndiratta, A. , von Tengg-Kobligk, H. , Zechmann, C. M. , Unterhinninghofen, R. , Kauczor, H. U. , and Giesel, F. L. , 2010, “ 3D Printing Based on Imaging Data: Review of Medical Applications,” Int. J. Comput. Assisted Radiol. Surg., 5(4), pp. 335–341. [CrossRef]
Giannitelli, S. M. , Accoto, D. , Trombetta, M. , and Rainer, A. , 2014, “ Current Trends in the Design of Scaffolds for Computer-Aided Tissue Engineering,” Acta Biomater., 10(2), pp. 580–594. [CrossRef] [PubMed]
Seol, Y. J. , Kang, H. W. , Lee, S. J. , Atala, A. , and Yoo, J. J. , 2014, “ Bioprinting Technology and Its Applications,” Eur. J. Cardiothorac. Surg., 46(3), pp. 342–348. [CrossRef] [PubMed]
Chia, H. N. , and Wu, B. M. , 2015, “ Recent Advances in 3D Printing of Biomaterials,” J. Biol. Eng., 9(1), p. 4. [CrossRef] [PubMed]
Hamid, Q. , Snyder, J. , Wang, C. , Timmer, M. , Hammer, J. , Guceri, S. , and Sun, W. , 2011, “ Fabrication of Three-Dimensional Scaffolds Using Precision Extrusion Deposition With an Assisted Cooling Device,” Biofabrication, 3(3), p. 034109. [CrossRef] [PubMed]
Borenstein, J. T. , Weinberg, E. J. , Orrick, B. K. , Sundback, C. , Kaazempur-Mofrad, M. R. , and Vacanti, J. P. , 2007, “ Microfabrication of Three-Dimensional Engineered Scaffolds,” Tissue Eng., 13(8), pp. 1837–1844. [CrossRef] [PubMed]
Becker, H. , Carstens, C. , Elbracht, R. , and Gartner, C. , 2010, “ Opportunities and Limits of Cell-Based Assay Miniaturization in Drug Discovery,” Expert Opin. Drug Discovery, 5(7), pp. 673–679. [CrossRef]
Mazzoli, A. , 2013, “ Selective Laser Sintering in Biomedical Engineering,” Med. Biol. Eng. Comput., 51(3), pp. 245–256. [CrossRef] [PubMed]
Leu, M. C. , and Garcia, D. A. , 2014, “ Development of Freeze-Form Extrusion Fabrication With Use of Sacrificial Material,” ASME J. Manuf. Sci. Eng., 136(6), p. 061014. [CrossRef]
Gaynor, A. T. , Meisel, N. A. , Williams, C. B. , and Guest, J. K. , 2014, “ Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing,” ASME J. Manuf. Sci. Eng., 136(6), p. 061015. [CrossRef]
Khalil, S. , and Sun, W. , 2009, “ Bioprinting Endothelial Cells With Alginate for 3D Tissue Constructs,” ASME J. Biomech. Eng., 131(11), p. 111002. [CrossRef]
Zhao, L. , Yan, K. R. C. , Yao, R. , Lin, F. , and Sun, W. , 2015, “ Alternating Force Based Drop-on-Demand Microdroplet Formation and Three-Dimensional Deposition,” ASME J. Manuf. Sci. Eng., 137(3), p. 031009. [CrossRef]
Starly, B. , Lau, W. , Bradbury, T. , and Sun, W. , 2006, “ Internal Architecture Design and Freeform Fabrication of Tissue Replacement Structures,” Comput. Aided Des., 38(2), pp. 115–124. [CrossRef]
Shor, L. , Guceri, S. , Chang, R. , Gordon, J. , Kang, Q. , Hartsock, L. , An, Y. H. , and Sun, W. , 2009, “ Precision Extruding Deposition (PED) Fabrication of Polycaprolactone (PCL) Scaffolds for Bone Tissue Engineering,” Biofabrication, 1(1), p. 015003. [CrossRef] [PubMed]
Mata, A. , Fleischman, A. J. , and Roy, S. , 2005, “ Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems,” Biomed. Microdevices, 7(4), pp. 281–293. [CrossRef] [PubMed]
Sigman, K. , Ghibu, F. , Sommerville, W. , Toledano, B. J. , Bastein, Y. , Cameron, L. , Hamid, Q. A. , and Mazer, B. , 1998, “ Intravenous Immunoglobulin Inhibits IgE Production in Human B Lymphocytes,” J. Allergy Clin. Immun., 102(3), pp. 421–427. [CrossRef]
Whitesides, G. M. , Ng, J. M. K. , Gitlin, I. , and Stroock, A. D. , 2002, “ Components for Integrated Poly(Dimethylsiloxane) Microfluidic Systems,” Electrophoresis, 23(20), pp. 3461–3473. [CrossRef] [PubMed]
Sun, W. , Chang, R. , and Nam, Y. , 2008, “ Direct Cell Writing of 3D Microorgan for in vitro Pharmacokinetic Model,” Tissue Eng., Part C, 14(2), pp. 157–166. [CrossRef]
Sun, W. , Chang, R. , Emami, K. , and Wu, H. L. , 2010, “ Biofabrication of a Three-Dimensional Liver Micro-Organ as an In Vitro Drug Metabolism Model,” Biofabrication, 2(4), pp. 1–11.


Grahic Jump Location
Fig. 2

Photograph of PED system with annotations (A) screw motor, (B) material inlet, (C) heating element, (D) nozzle, and (E) motion system. Schematic of PED extruder screw with process parameters and extruded filament geometrically annotated. Time-lapse photograph of single-layer scaffold printing.

Grahic Jump Location
Fig. 3

Block diagram of the thermal/chemical cycle to remove PCL pattern from PDMS substrate. The black arrow points to ejection of water and molten PCL. Photographs of the fully cleared manifold perfused by variable dye fluids.

Grahic Jump Location
Fig. 1

Cell-laden microfluidic device construction process overview to leverage PED and replica molding to both place cells during fabrication or guide cells after fabrication

Grahic Jump Location
Fig. 4

PED material delivery system's extruder screw with geometric parameters annotated and modeled as an unrolled helical screw. Photographs present the PED extruder barrel, screw, and die with measurements.

Grahic Jump Location
Fig. 7

(a) Profiles of three PED printed PCL filament with the same extruder height above the substrate and variable printhead speed. (b) Open channels in PDMS substrate fabricated by replica molding of PED printed PCL template. Channel Width (W), PED screw speed RPM, and height of the outlet tip above the substrate (E) annotated.

Grahic Jump Location
Fig. 8

PDMS substrate with embedded 3D manifold fabricated by replica molding of three-layer PED printed PCL template. Cross section of the PDMS substrate presents interconnected network of orthographic channels.

Grahic Jump Location
Fig. 5

(Top) AR2000ex Advanced Rheometer System photographs with PCL pellets loaded on the lower of two Peltier plates. (Bottom) Strain- and temperature-sensitivity of PCL through the functional PED operating windows.

Grahic Jump Location
Fig. 10

3D PDMS manifold seeded by injection of cell-laden medium. All four images are the same microscope view field: ((a) and (c)) light and ((b) and (d)) fluorescent images on two focal planes ((a) and (b)) closer and ((c) and (d)) farther focal plane.

Grahic Jump Location
Fig. 6

Comparison of experimental and derived model (Eq. (14)) results for process control PED process parameter screw rotation speed's effect on the mass flow rate from the PED extruder, where both the heating elements are set to 80 °C and Ø350 μm restrictor die.

Grahic Jump Location
Fig. 9

Time-lapse photo sequence of PDMS microfluidic device being perfused. Each frame contains a top (left) and front (right) views of the device.

Grahic Jump Location
Fig. 11

Cells bioprinted in open channels labeled with fluorescent probes to demonstrate controlled cellular arrangement in the open channel network using single and dual nozzle printing



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In