Abstract

The investigation of statistical scaling in localization-induced failures dates back to da Vinci's speculation on the length effect on rope strength in 1500 s. The early mathematical description of statistical scaling emerged with the birth of the extreme value statistics. The most commonly known mathematical model for statistical scaling is the Weibull size effect, which is a direct consequence of the infinite weakest-link model. However, abundant experimental observations on various localization-induced failures have shown that the Weibull size effect is inadequate. Over the last two decades, two mathematical models were developed to describe the statistical size effect in localization-induced failures. One is the finite weakest-link model, in which the random structural resistance is expressed as the minimum of a set of independent discrete random variables. The other is the level excursion model, a continuum description of the finite weakest-link model, in which the structural failure probability is calculated as the probability of the upcrossing of a random field over a barrier. This paper reviews the mathematical formulation of these two models and their applications to various engineering problems including the strength distributions of quasi-brittle structures, failure statistics of micro-electromechanical systems (MEMS) devices, breakdown statistics of high– k gate dielectrics, and probability distribution of buckling pressure of spherical shells containing random geometric imperfections. In addition, the implications of statistical scaling for the stochastic finite element simulations and the reliability-based structural design are discussed. In particular, the recent development of the size-dependent safety factors is reviewed.

References

1.
Bažant
,
Z. P.
,
1976
, “
Instability, Ductility, and Size Effect in Strain-Softening Concrete
,”
J. Eng. Mech. Div. ASCE
,
102
(
2
), pp.
331
344
.10.1061/JMCEA3.0002111
2.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
3.
Kemeny
,
J. M.
, and
Cook
,
N. G. W.
,
1987
, “
Crack Models for the Failure of Rock Under Compression
,”
Proceedings of Second International Conference on Constitutive Laws for Engineering Materials
,
C. S.
Desai
,
E.
Krempl
,
P. D.
Kiousis
, and
T.
Kundu
, eds., Vol.
2
,
Elsevier
,
New York
, pp.
879
887
.
4.
Bésuelle
,
P.
,
2001
, “
Compacting and Dilating Shear Bonds in Porous Rock: Theoretical and Experimental Conditions
,”
J. Geophys. Res.
,
106
(
B7
), pp.
13435
13442.
10.1029/2001JB900011
5.
Rudnicki
,
J. W.
,
2002
, “
Conditions for Compaction and Shear Bands in a Transversely Isotropic Material
,”
Int. J. Solids Struct.
,
39
(
13–14
), pp.
3741
3756
.10.1016/S0020-7683(02)00173-7
6.
Bažant
,
Z. P.
, and
Kazemi
,
M. T.
,
1991
, “
Size Effect on Diagonal Shear Failure of Beams Without Stirrups
,”
ACI Struct. J.
,
88
, pp.
268
276.
10.14359/3097
7.
Syroka-Korol
,
E.
, and
Tejchman
,
J.
,
2014
, “
Experimental Investigation of Size Effect in Reinforced Concrete Beams Failing by Shear
,”
Eng. Struct.
,
58
, pp.
63
78
.10.1016/j.engstruct.2013.10.012
8.
Yu
,
Q.
,
Le
,
J.-L.
,
Hubler
,
M. H.
,
Wendner
,
R.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2016
, “
Comparison of Main Models for Size Effect on Shear Strength of Reinforced and Prestressed Concrete Beams
,”
Struct. Concrete (Fib)
,
17
(
5
), pp.
778
789
.10.1002/suco.201500126
9.
Kármán
,
T. V.
, and
Tsien
,
H.-S.
,
1939
, “
The Buckling of Spherical Shells by External Pressure
,”
J. Aeronaut. Sci.
,
7
(
2
), pp.
43
50
.10.2514/8.1019
10.
Horák
,
J.
,
Lord
,
G. J.
, and
Peletier
,
M.
,
2006
, “
Cylinder Buckling: The Mountain Pass as an Organizing Center
,”
SIAM J. Appl. Math.
,
66
(
5
), pp.
1793
1824
.10.1137/050635778
11.
Kreilos
,
T.
, and
Schneider
,
T. M.
,
2017
, “
Fully Localized Post-Buckling States of Cylindrical Shells Under Axial Compression
,”
Proc. R. Soc. London A
,
473
(
2205
), p.
20170177
.10.1098/rspa.2017.0177
12.
Audoly
,
B.
, and
Hutchinson
,
J. W.
,
2020
, “
Localization in Spherical Shell Buckling
,”
J. Mech. Phys. Solids
,
136
, p.
103720
.10.1016/j.jmps.2019.103720
13.
Wilk
,
G. D.
,
Wallace
,
R. M.
, and
Anthony
,
J. M.
,
2001
, “
High-k Gate Dielectrics: Current Status and Materials Properties Considerations
,”
J. Appl. Phys.
,
89
(
10
), pp.
5243
5275
.10.1063/1.1361065
14.
Chatterjee
,
S.
,
Kuo
,
Y.
,
Lu
,
J.
,
Tewg
,
J.-Y.
, and
Majhi
,
P.
,
2006
, “
Electrical Reliability Aspects of HfO2 High-k Gate Dieletrics With Tan Metal Gate Electrodes Under Constant Voltage Stress
,”
Microelectron. Reliab.
,
46
(
1
), pp.
69
76
.10.1016/j.microrel.2005.02.004
15.
Le
,
J.-L.
,
Bažant
,
Z. P.
, and
Bazant
,
M. Z.
,
2009
, “
Lifetime of High-k Gate Dielectrics and Analogy With Strength of Quasi-Brittle Structures
,”
J. Appl. Phys.
,
106
, p.
104119
.10.1063/1.3256225
16.
Hill
,
R.
,
1952
, “
On Discontinuous Plastic States, With Special Reference to Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
,
1
(
1
), pp.
19
30
.10.1016/0022-5096(52)90003-3
17.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
,
1976
, “
A Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
371
394
.10.1016/0022-5096(75)90001-0
18.
Rizzi
,
E.
,
Carol
,
I.
, and
Willam
,
K.
,
1995
, “
Localization Analysis of Elastic Degradation With Application to Scalar Damage
,”
J. Eng. Mech. ASCE
,
121
(
4
), pp.
541
554
.10.1061/(ASCE)0733-9399(1995)121:4(541)
19.
Jirásek
,
M.
,
2007
, “
Mathematical Analysis of Strain Localization
,”
Rev. Eur. Gén. Civ.
,
11
(
7–8
), pp.
977
991
.10.1080/17747120.2007.9692973
20.
Bažant
,
Z. P.
, and
Oh
,
B.-H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Mater. Struct.
,
16
, pp.
155
177
.http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/157.pdf
21.
Oliver
,
J.
,
1989
, “
A Consistent Characteristic Length for Smeared Cracking Models
,”
Int. J. Numer. Meth. Eng.
,
28
, pp.
461
474
.10.1002/nme.1620280214
22.
Jirásek
,
M.
, and
Bauer
,
M.
,
2012
, “
Numerical Aspects of the Crack Band Approach
,”
Comp. Struct.
,
110-111
, pp.
60
78
.10.1016/j.compstruc.2012.06.006
23.
Gorgogianni
,
A.
,
Eliáš
,
J.
, and
Le
,
J.-L.
,
2020
, “
Mechanism-Based Energy Regularization in Computational Modeling of Quasibrittle Fracture
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091003
.10.1115/1.4047207
24.
Pijaudier-Cabot
,
G.
, and
Bažant
,
Z. P.
,
1987
, “
Nonlocal Damage Theory
,”
J. Eng. Mech. ASCE
,
113
(
10
), pp.
1512
1533
.10.1061/(ASCE)0733-9399(1987)113:10(1512)
25.
Bazˇant
,
Z. P.
, and
Pijaudier-Cabot
,
G.
,
1988
, “
Nonlocal Continuum Damage, Localization Instability and Convergence
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
287
293
.10.1115/1.3173674
26.
Bažant
,
Z. P.
, and
Jirásek
,
M.
,
2002
, “
Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress
,”
J. Eng. Mech. ASCE
,
128
(
11
), pp.
1119
1149
.10.1061/(ASCE)0733-9399(2002)128:11(1119)
27.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
,
106
(
4
), pp.
326
330
.10.1115/1.3225725
28.
Bažant
,
Z. P.
,
1984
, “
Imbricate Continuum and Progressive Fracturing of Concrete and Geomaterials
,”
Meccanica
,
19
(
S1
), pp.
86
93
.10.1007/BF01558458
29.
Mühlhaus
,
H.-B.
, and
Alfantis
,
E. C.
,
1991
, “
A Variational Principle for Gradient Plasticity
,”
Int. J. Solids Struct.
,
28
(
7
), pp.
845
857
.10.1016/0020-7683(91)90004-Y
30.
Peerlings
,
R. H. J.
,
de Borst
,
R.
,
Brekelmans
,
W. A. M.
, and
de Vree
,
J. H. P.
,
1996
, “
Gradient Enhanced Damage for Quasi-Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
39
(
19
), pp.
3391
3403
.10.1002/(SICI)1097-0207(19961015)39:19%3C3391::AID-NME7%3E3.0.CO;2-D
31.
Peerlings
,
R. H. J.
,
Geers
,
M. G. D.
,
de Borst
,
R.
, and
Brekelmans
,
W. A. M.
,
2001
, “
A Critical Comparison of Nonlocal and Gradient-Enhanced Softening Continua
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
7723
7746
.10.1016/S0020-7683(01)00087-7
32.
Bažant
,
Z. P.
,
2004
, “
Scaling Theory of Quasibrittle Structural Failure
,”
Proc. Natl. Acad. Sci. U. S. A.
,
101
(
37
), pp.
13400
13407
.10.1073/pnas.0404096101
33.
Bažant
,
Z. P.
,
2005
,
Scaling of Structural Strength
,
Elsevier
,
London, UK
.
34.
Bažant
,
Z. P.
, and
Le
,
J.-L.
,
2017
,
Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect
,
Cambridge University Press
,
Cambridge, UK
.
35.
Bažant
,
Z. P.
,
Le
,
J.-L.
, and
Salviato
,
M.
,
2021
,
Quasibrittle Fracture Mechanics: A First Course
,
Oxford University Press
,
Oxford, UK
.
36.
Lee
,
A.
,
López
,
J. M.
,
Marthelot
,
J.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2016
, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111005
.10.1115/1.4034431
37.
Wang
,
H.
,
Guilleminot
,
J.
,
Schafer
,
B. W.
, and
Tootkaboni
,
M.
,
2022
, “
Stochastic Analysis of Geometrically Imperfect Thin Cylindrical Shells Using Topology-Aware Uncertainty Models
,”
Comput. Methods Appl. Mech. Eng.
,
393
, p.
114780
.10.1016/j.cma.2022.114780
38.
Derveni
,
F.
,
Gueissaz
,
W.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2023
, “
Probabilistic Buckling of Imperfect Hemispherical Shells Containing a Distribution of Defects
,”
Philos. Trans. R. Soc. A
,
381
(
2244
), p.
20220298
.10.1098/rsta.2022.0298
39.
Baizhikova
,
Z.
,
Ballarini
,
R.
, and
Le
,
J.-L.
,
2024
, “
Uncovering the Dual Role of Dimensionless Radius in Buckling of Spherical Shells With Random Geometric Imperfection
,”
Proc. Natl. Acad. Sci. U. S. A.
,
121
(
16
), p.
e2322415121
.10.1073/pnas.2322415121
40.
da Vinci
,
L.
,
1881–91
,
The Notebook of Leonardo da Vinci
(
1945
),
Edward
McCurdy, London
, p.
546
; and Les Manuscrits de Léonard de Vinci, 1500 s, Translated in French by C. Ravaisson-Mollien,
Institut de France
,
London
, Vol.
3
.
41.
Mariotte
,
E.
,
1740
,
Traité du mouvement des eaux, posthumously
, edited by
M.
de la Hire
; English Translated by
J. T.
Desvaguliers
, also Marriotte's Collected Works, 2nd ed.,
The Hague
,
London
(1718), p.
249
, p.
1686
.
42.
Fisher
,
R. A.
, and
Tippet
,
L. H. C.
,
1928
, “
Limiting Form of the Frequency Distribution the Largest and Smallest Number of a Sample
,”
Proc. Cambridge Philos. Soc.
,
24
(
2
), pp.
180
190
.10.1017/S0305004100015681
43.
Weibull
,
W.
,
1939
, “
The Phenomenon of Rupture in Solids
,”
Proc. R. Sweden Inst. Eng. Res.
,
153
, pp.
1
55
.
44.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
(
3
), pp.
293
297
.10.1115/1.4010337
45.
Bažant
,
Z. P.
, and
Pang
,
S. D.
,
2006
, “
Mechanics Based Statistics of Failure Risk of Quasibrittle Structures and Size Effect on Safety Factors
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
25
), pp.
9434
9439
.10.1073/pnas.0602684103
46.
Bažant
,
Z. P.
, and
Pang
,
S. D.
,
2007
, “
Activation Energy Based Extreme Value Statistics and Size Effect in Brittle and Quasibrittle Fracture
,”
J. Mech. Phys. Solids
,
55
(
1
), pp.
91
131
.10.1016/j.jmps.2006.05.007
47.
Bažant
,
Z. P.
,
Le
,
J.-L.
, and
Bazant
,
M. Z.
,
2009
, “
Scaling of Strength and Lifetime Distributions of Quasibrittle Structures Based on Atomistic Fracture Mechanics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
, pp.
11484
11489
.10.1073/pnas.0904797106
48.
Le
,
J.-L.
,
Bažant
,
Z. P.
, and
Bazant
,
M. Z.
,
2011
, “
Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: I. Strength, Crack Growth, Lifetime and Scaling
,”
J. Mech. Phys. Solids
,
59
, pp.
1291
1321
.10.1016/j.jmps.2011.03.002
49.
Xu
,
Z.
, and
Le
,
J.-L.
,
2017
, “
A First Passage Model for Probabilistic Failure of Polycrystalline Silicon MEMS Structures
,”
J. Mech. Phys. Solids
,
99
, pp.
225
241
.10.1016/j.jmps.2016.11.007
50.
Xu
,
Z.
, and
Le
,
J.-L.
,
2018
, “
On Power-Law Tail Distribution of Strength Statistics of Brittle and Quasibrittle Structures
,”
Eng. Frac. Mech.
,
197
, pp.
80
91
.10.1016/j.engfracmech.2018.04.009
51.
Le
,
J.-L.
,
2020
, “
Level Excursion Analysis of Probabilistic Quasibrittle Fracture
,”
Sci. China Tech. Sci.
,
63
, pp.
1141
1153
.10.1007/s11431-019-1483-0
52.
Gumbel
,
E. J.
,
1958
,
Statistics of Extremes
,
Columbia University Press
,
New York
.
53.
Ang
,
A. H. S.
, and
Tang
,
W. H.
,
1984
,
Probability Concepts in Engineering Planning and Design
, Vol. II (Decision, Risk and Reliability),
John Wiley
,
New York
.
54.
Vanmarcke
,
E.
,
2010
,
Random Fields Analysis and Synthesis
,
World Scientific Publishers
,
Singapore
.
55.
Gnedenko
,
B. V.
,
1943
, “
Sur la Distribution Limite du Terme Maximum D'une Serie Aleatoire
,”
Ann. Math.
,
44
, pp.
423
453
.10.2307/1968974
56.
Castillo
,
E.
,
1988
,
Extreme Value Theory in Engineering
,
Academic Press
,
San Diego, CA
.
57.
Barenblatt
,
G. I.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics
,
Cambridge University Press
,
Cambridge, UK
.
58.
Barenblatt
,
G. I.
,
2003
,
Scaling
,
Cambridge University Press
,
Cambridge, UK
.
59.
Le
,
J.-L.
,
Cannone Falchetto
,
A.
, and
Marasteanu
,
M. O.
,
2013
, “
Determination of Strength Distribution of Quasibrittle Structures From Mean Size Effect Analysis
,”
Mech. Mater.
,
66
, pp.
79
87
.10.1016/j.mechmat.2013.07.003
60.
Le
,
J.-L.
,
2015
, “
Size Effect on Reliability Indices and Safety Factors of Quasibrittle Structures
,”
Struct. Saf.
,
52
, pp.
20
28
.10.1016/j.strusafe.2014.07.002
61.
Vanmarcke
,
E. H.
,
1975
, “
On the Distribution of the First-Passage Time for Normal Stationary Random Processes
,”
ASME J. Appl. Mech.
,
42
(
1
), pp.
215
220
.10.1115/1.3423521
62.
Vořechovský
,
M.
, and
Eliáš
,
J.
,
2020
, “
Fracture in Random Quasibrittle Media: II. Analytical Model Based on Extremes of the Averaging Process
,”
Eng. Frac. Mech.
,
235
, p.
107155
.10.1016/j.engfracmech.2020.107155
63.
Grigoriu
,
M.
,
1984
, “
Crossings of non-Gaussian Translation Processes
,”
J. Eng. Mech. ASCE
,
110
(
4
), pp.
610
620
.10.1061/(ASCE)0733-9399(1984)110:4(610)
64.
Grigoriu
,
M.
,
1998
, “
Simulation of Stationary Non-Gaussian Translation Processes
,”
J. Eng. Mech. ASCE
,
124
(
2
), pp.
121
126
.10.1061/(ASCE)0733-9399(1998)124:2(121)
65.
Adler
,
R. J.
,
2000
, “
On Excursion Sets, Tube Formulas and Maxima of Random Fields
,”
Ann. Appl. Prob.
, 10(1), pp.
1
74
.10.1214/aoap/1019737664
66.
Adler
,
R. J.
, and
Taylor
,
J. E.
,
2009
,
Random Fields and Geometry
,
Springer Science & Business Media, New York
.
67.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1964
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
, Vol.
55
,
Courier Corporation
,
New York
.
68.
Ripley
,
B. D.
,
2005
,
Spatial Statistics
, Vol.
575
,
Wiley
,
Hoboken, NJ
.
69.
Abrahamsen
,
P.
,
1997
,
A Review of Gaussian Random Fields and Correlation Functions
,
Norsk Regnesentral/Norwegian Computing Center
,
Oslo, Norway
.
70.
Fontana
,
J.
, and
Palffy-Muhoray
,
P.
,
2020
, “
St. Petersburg Paradox and Failure Probability
,”
Phys. Rev. Lett.
,
124
, p.
245501
.10.1103/PhysRevLett.124.245501
71.
Eliáš
,
J.
, and
Le
,
J.-L.
,
2024
, “
Size Effect on Strength Statistics of Prenotched Quasibrittle Structures
,”
J. Eng. Mech. ASCE
,
150
(
6
), p.
04024025
.10.1061/JENMDT.EMENG-7629
72.
Salem
,
J. A.
,
Nemeth
,
N. N.
,
Powers
,
L. P.
, and
Choi
,
S. R.
,
1996
, “
Reliability Analysis of Uniaxially Ground Brittle Materials,”
ASME Eng. Gas Turbines Power
,
118
(
4
), pp.
863
871
.10.1115/1.2817007
73.
Gross
,
B.
,
1996
, “
Least Squares Best Fit Method for the Three Parameter Weibull Distribution: Analysis of Tensile and Bend Specimens With Volume or Surface Flaw Failure
,” NASA, Cleveland, OH, Report No. TM-4721, pp.
1
21
.
74.
Santos
,
C. D.
,
Strecker
,
K.
,
Piorino Neto
,
F.
,
Silva
,
O. M. D. M.
,
Baldacim
,
S. A.
, and
Silva
,
C. R. M. D.
,
2003
, “
Evaluation of the Reliability of Si3N4-Al2O3 -CTR2O3 Ceramics Through Weibull Analysis
,”
Mater. Res.
,
6
(
4
), pp.
463
467
.10.1590/S1516-14392003000400006
75.
Hazra
,
S. S.
,
Baker
,
M. S.
,
Beuth
,
J. L.
, and
de Boer
,
M. P.
,
2009
, “
Demonstration of an In-Situ On-Chip Tester
,”
J. Micromech. Microeng.
,
19
(
8
), p.
082001
.10.1088/0960-1317/19/8/082001
76.
Reedy
,
E. D.
,
Boyce
,
B. L.
,
Foulk
,
J. W.
,
Field
,
R. V.
,
de Boer
,
M. P.
, and
Hazra
,
S. S.
,
2011
, “
Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures
,”
J. Microelectromech. Syst.
,
20
(
4
), pp.
922
932
.10.1109/JMEMS.2011.2153824
77.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Labs Tech. J.
,
23
(
3
), pp.
282
332
.10.1002/j.1538-7305.1944.tb00874.x
78.
Saleh
,
M. E.
,
Beuth
,
J. L.
, and
de Boer
,
M. P.
,
2014
, “
Validated Prediction of the Strength Size Effect in Polycrystalline Silicon Using the Three-Parameter Weibull Function
,”
J. Amer. Cer. Soc.
,
97
(
12
), pp.
3982
3990
.10.1111/jace.13226
79.
Le
,
J.-L.
, and
Eliáš
,
J.
,
2016
, “
A Probabilistic Crack Band Model for Quasibrittle Fracture
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051005
.10.1115/1.4032692
80.
Gorgogianni
,
A.
,
Elias
,
J.
, and
Le
,
J.-L.
,
2022
, “
Mesh Objective Stochastic Simulations of Quasibrittle Fracture
,”
J. Mech. Phys. Solids
,
159
, p.
104745
.10.1016/j.jmps.2021.104745
81.
Vievering
,
J.
, and
Le
,
J.-L.
,
2024
, “
Mechanism-Based Mapping of Random Fields for Stochastic FE Simulations of Quasibrittle Fracture
,”
J. Mech. Phys. Solids
,
186
, p.
105578
.10.1016/j.jmps.2024.105578
82.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
1991
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
Oxford University Press
,
New York
.
83.
Koiter
,
W. T.
,
1945
,
Over de stabiliteit van het elastisch evenwicht
, Ph.D. thesis,
Delft University of Technology
,
Amsterdam, The Netherlands
.
84.
Hutchinson
,
J. W.
, and
Koiter
,
W. T.
,
1970
, “
Postbuckling Theory
,”
Appl. Mech. Rev. ASME
,
23
(
12
), pp.
1353
1366
.
85.
Bolotin
,
V. V.
,
1962
, “
Statistical Methods in the Nonlinear Theory of Elastic Shells
,”
NASA
,
Washington, DC
, Report No. TT F-85.
86.
Amazigo
,
J. C.
,
1969
, “
Buckling Under Axial Compression of Long Cylindrical Shells With Random Axisymmetric Imperfections
,”
Quart. Appl. Math.
,
26
(
4
), pp.
537
566
.10.1090/qam/99838
87.
Elishakoff
,
I.
, and
Cai
,
G. Q.
,
1994
, “
Nonlinear Buckling of a Column With Initial Imperfection Via Stochastic and Non-Stochastic Convex Models
,”
Int. J. Non-Linear Mech.
,
29
, pp.
71
82
.10.1016/0020-7462(94)90053-1
88.
Elishakoff
,
I.
,
2000
, “
Uncertain Buckling: Its Past, Present and Future
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
6869
6889
.10.1016/S0020-7683(99)00318-2
89.
Tsien
,
H.-S.
,
1942
, “
A Theory for the Buckling of Thin Shells
,”
J. Aeronaut. Sci.
,
9
(
10
), pp.
373
384
.10.2514/8.10911
90.
Le
,
J.-L.
,
2012
, “
A Finite Weakest Link Model of Lifetime Distribution of High-Kgate Dielectrics Under Unipolar AC Voltage Stress
,”
Microelectron. Reliab.
,
52
(
1
), pp.
100
106
.10.1016/j.microrel.2011.09.010
91.
American Concrete Institute
,
2019
, Building Code Requirements for Structural Concrete,
American Concrete Institute
,
Farmington Hills, MI
, Report No. ACI
318
19
.
92.
Nozawa
,
T.
,
Kim
,
S.
,
Ozawa
,
K.
, and
Tanigawa
,
H.
,
2014
, “
Stress Envelope of Silicon Carbide Composites at Elevated Temperatures
,”
Fusion Eng. Des.
,
89
(
7
), pp.
1723
1727
.10.1016/j.fusengdes.2013.12.032
93.
Cornell
,
C. A.
,
1969
, “
A Probability-Based Structural Code
,”
J. Amer. Concr. Inst.
,
66
(
12
), pp.
974
985
.10.14359/7446
94.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
95.
Luo
,
W.
, and
Bažant
,
Z. P.
,
2017
, “
Fishnet Model for Failure Probability Tail of Nacre-Like Imbricated Lamellar Materials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
49
), pp.
12900
12905
.10.1073/pnas.1714103114
96.
Luo
,
W.
, and
Bažant
,
Z. P.
,
2017
, “
Fishnet Statistics for Probabilistic Strength and Scaling of Nacreous Imbricated Lamellar Materials
,”
J. Mech. Phys. Solids
,
109
, pp.
264
287
.10.1016/j.jmps.2017.07.023
97.
Luo
,
W.
, and
Bažant
,
Z. P.
,
2018
, “
Fishnet Model With Order Statistics for Tail Probability of Failure of Nacreous Biomimetic Materials With Softening Interlaminar Links
,”
J. Mech. Phys. Solids
,
121
, pp.
281
295
.10.1016/j.jmps.2018.07.023
98.
Xu
,
H.
,
Vievering
,
J.
,
Nguyen
,
H. T.
,
Zhang
,
Y.
,
Le
,
J.-L.
, and
Bažant
,
Z. P.
,
2024
, “
Asymptotically Matched Extrapolation of Fishnet Failure Probability to Continuum Scale
,”
J. Mech. Phys. Solids
, 182, p. 105479.10.1016/j.jmps.2023.105479
You do not currently have access to this content.