Abstract

Aside from ultrahigh strength and elasticity, metallic glasses (MGs) possess a number of favorable properties. However, their lack of dislocation based plastic deformation mechanisms in crystalline metals and the resulting loss of ductility have restricted the engineering applications of MGs over the last 60 years. This review aims to provide an overview of deformation and failure mechanisms of MGs via formation and propagation of shear bands (SBs), with an emphasis on the control of SBs to promote strength-ductility synergy. With this goal in mind, we highlight some of the emerging strategies to improve the ductility of MGs. Topics covered include postprocessing techniques such as precompression, heterogeneity tuning, and rejuvenation, with a primary focus on recent progresses in structural design based methods including nanoglasses, notched MGs, and MG nanolattices, as future innovations toward strength-ductility synergy beyond the current benchmark ranges.

References

1.
Klement
,
W.
,
Willens
,
R. H.
, and
Duwez
,
P.
,
1960
, “
Non-Crystalline Structure in Solidified Gold–Silicon Alloys
,”
Nature
,
187
(
4740
), pp.
869
870
.10.1038/187869b0
2.
Kruzic
,
J. J.
,
2016
, “
Bulk Metallic Glasses as Structural Materials: A Review
,”
Adv. Eng. Mater.
,
18
(
8
), pp.
1308
1331
.10.1002/adem.201600066
3.
Inoue
,
A.
, and
Takeuchi
,
A.
,
2011
, “
Recent Development and Application Products of Bulk Glassy Alloys
,”
Acta Mater.
,
59
(
6
), pp.
2243
2267
.10.1016/j.actamat.2010.11.027
4.
Johnson
,
W. L.
,
1996
, “
Bulk Metallic Glasses - a New Engineering Material
,”
Curr. Opin. Solid State Mater. Sci.
,
1
(
3
), pp.
383
386
.10.1016/S1359-0286(96)80029-5
5.
Greer
,
A. L.
,
1995
, “
Metallic Glasses
,”
Science
,
267
(
5206
), pp.
1947
1953
.10.1126/science.267.5206.1947
6.
Johnson
,
W. L.
,
1999
, “
Bulk Glass-Forming Metallic Alloys: Science and Technology
,”
MRS Bull.
,
24
(
10
), pp.
42
56
.10.1557/S0883769400053252
7.
Gloriant
,
T.
,
2003
, “
Microhardness and Abrasive Wear Resistance of Metallic Glasses and Nanostructured Composite Materials
,”
J. Non-Cryst. Solids
,
316
(
1
), pp.
96
103
.10.1016/S0022-3093(02)01941-5
8.
Hofmann
,
D. C.
,
Andersen
,
L. M.
,
Kolodziejska
,
J.
,
Roberts
,
S. N.
,
Borgonia
,
J. P.
,
Johnson
,
W. L.
,
Vecchio
,
K. S.
, and
Kennett
,
A.
,
2017
, “
Optimizing Bulk Metallic Glasses for Robust, Highly Wear-Resistant Gears
,”
Adv. Eng. Mater.
,
19
(
1
), p.
1600541
.10.1002/adem.201600541
9.
Fornell
,
J.
,
Van Steenberge
,
N.
,
Varea
,
A.
,
Rossinyol
,
E.
,
Pellicer
,
E.
,
Surinach
,
S.
,
Baro
,
M. D.
, and
Sort
,
J.
,
2011
, “
Enhanced Mechanical Properties and In Vitro Corrosion Behavior of Amorphous and Devitrified Ti40Zr10Cu38Pd12 Metallic Glass
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1709
1717
.10.1016/j.jmbbm.2011.05.028
10.
Inoue
,
A.
,
Shen
,
B.
,
Koshiba
,
H.
,
Kato
,
H.
, and
Yavari
,
A. R.
,
2003
, “
Cobalt-Based Bulk Glassy Alloy With Ultrahigh Strength and Soft Magnetic Properties
,”
Nat. Mater.
,
2
(
10
), pp.
661
663
.10.1038/nmat982
11.
Wang
,
J.
,
Li
,
R.
,
Hua
,
N.
,
Huang
,
L.
, and
Zhang
,
T.
,
2011
, “
Ternary Fe–P–C Bulk Metallic Glass With Good Soft-Magnetic and Mechanical Properties
,”
Scr. Mater.
,
65
(
6
), pp.
536
539
.10.1016/j.scriptamat.2011.06.020
12.
Li
,
H. X.
,
Lu
,
Z. C.
,
Wang
,
S. L.
,
Wu
,
Y.
, and
Lu
,
Z. P.
,
2019
, “
Fe-Based Bulk Metallic Glasses: Glass Formation, Fabrication, Properties and Applications
,”
Prog. Mater. Sci.
,
103
, pp.
235
318
.10.1016/j.pmatsci.2019.01.003
13.
Wang
,
W. H.
,
2012
, “
The Elastic Properties, Elastic Models and Elastic Perspectives of Metallic Glasses
,”
Prog. Mater. Sci.
,
57
(
3
), pp.
487
656
.10.1016/j.pmatsci.2011.07.001
14.
Zhu
,
Z.
,
Zhang
,
H.
,
Pan
,
D.
,
Sun
,
W.
, and
Hu
,
Z.
,
2006
, “
Fabrication of Binary Ni-Nb Bulk Metallic Glass With High Strength and Compressive Plasticity
,”
Adv. Eng. Mater.
,
8
(
10
), pp.
953
957
.10.1002/adem.200600105
15.
Ashby
,
M. F.
, and
Greer
,
A. L.
,
2006
, “
Metallic Glasses as Structural Materials
,”
Scr. Mater.
,
54
(
3
), pp.
321
326
.10.1016/j.scriptamat.2005.09.051
16.
Madge
,
S. V.
,
Louzguine-Luzgin
,
D. V.
,
Lewandowski
,
J. J.
, and
Greer
,
A. L.
,
2012
, “
Toughness, Extrinsic Effects and Poisson's Ratio of Bulk Metallic Glasses
,”
Acta Mater.
,
60
(
12
), pp.
4800
4809
.10.1016/j.actamat.2012.05.025
17.
Cheng
,
Y. Q.
, and
Ma
,
E.
,
2011
, “
Atomic-Level Structure and Structure–Property Relationship in Metallic Glasses
,”
Prog. Mater. Sci.
,
56
(
4
), pp.
379
473
.10.1016/j.pmatsci.2010.12.002
18.
Trexler
,
M. M.
, and
Thadhani
,
N. N.
,
2010
, “
Mechanical Properties of Bulk Metallic Glasses
,”
Prog. Mater. Sci.
,
55
(
8
), pp.
759
839
.10.1016/j.pmatsci.2010.04.002
19.
Johnson
,
W. L.
, and
Plummer
,
J.
,
2015
, “
Is Metallic Glass Poised to Come of Age
,”
Nat. Mater.
,
14
(
6
), pp.
553
555
.10.1038/nmat4297
20.
Tiberto
,
P.
,
Baricco
,
M.
,
Olivetti
,
E.
, and
Piccin
,
R.
,
2007
, “
Magnetic Properties of Bulk Metallic Glasses
,”
Adv. Eng. Mater.
,
9
(
6
), pp.
468
474
.10.1002/adem.200700050
21.
Inoue
,
A.
,
Kong
,
F. L.
,
Man
,
Q. K.
,
Shen
,
B. L.
,
Li
,
R. W.
, and
Al-Marzouki
,
F.
,
2014
, “
Development and Applications of Fe- and Co-Based Bulk Glassy Alloys and Their Prospects
,”
J. Alloys Compd.
,
615
, pp.
S2
S8
.10.1016/j.jallcom.2013.11.122
22.
Khan
,
M. M.
,
Nemati
,
A.
,
Rahman
,
Z. U.
,
Shah
,
U. H.
,
Asgar
,
H.
, and
Haider
,
W.
,
2018
, “
Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review
,”
Crit. Rev. Solid State Mater. Sci.
,
43
(
3
), pp.
233
268
.10.1080/10408436.2017.1358149
23.
Kumar
,
G.
,
Tang
,
H. X.
, and
Schroers
,
J.
,
2009
, “
Nanomoulding With Amorphous Metals
,”
Nature
,
457
(
7231
), pp.
868
872
.10.1038/nature07718
24.
Li
,
W. B.
,
Fan
,
F.
,
Wang
,
X. M.
,
Li
,
W. B.
, and
Chen
,
C.
,
2011
, “
Simulation Research on the Penetration Phenomenon of Long Rod Armour-Piercing Projectile With Different Materials
,”
Adv. Eng. Mater.
,
194–196
, pp.
3
7
.10.4028/www.scientific.net/AMR.194-196.3
25.
Greer
,
A. L.
,
Cheng
,
Y. Q.
, and
Ma
,
E.
,
2013
, “
Shear Bands in Metallic Glasses
,”
Mater. Sci. Eng. R: Rep.
,
74
(
4
), pp.
71
132
.10.1016/j.mser.2013.04.001
26.
Wang
,
Z.
, and
Wang
,
W.
,
2019
, “
Flow Units as Dynamic Defects in Metallic Glassy Materials
,”
Natl. Sci. Rev.
,
6
(
2
), pp.
304
323
.10.1093/nsr/nwy084
27.
Pan
,
D.
,
Inoue
,
A.
,
Sakurai
,
T.
, and
Chen
,
M. W.
,
2008
, “
Experimental Characterization of Shear Transformation Zones for Plastic Flow of Bulk Metallic Glasses
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
39
), pp.
14769
14772
.10.1073/pnas.0806051105
28.
Johnson
,
W. L.
, and
Samwer
,
K.
,
2005
, “
A Universal Criterion for Plastic Yielding of Metallic Glasses With a (T/Tg) 2/3 Temperature Dependence
,”
Phys. Rev. Lett.
,
95
(
19
), p.
195501
.10.1103/PhysRevLett.95.195501
29.
Inoue
,
A.
, and
Louzguine
,
D. V.
,
2011
, “
Bulk Nanocrystalline and Nanocomposite Alloys Produced From Amorphous Phase
,”
Nanostructured Metals and Alloys
,
S. H.
Whang
, ed.,
Woodhead Publishing
,
London
, UK, pp.
152
177
.
30.
Steif
,
P. S.
,
Spaepen
,
F.
, and
Hutchinson
,
J. W.
,
1982
, “
Strain Localization in Amorphous Metals
,”
Acta Metall.
,
30
(
2
), pp.
447
455
.10.1016/0001-6160(82)90225-5
31.
Schuh
,
C. A.
,
Hufnagel
,
T. C.
, and
Ramamurty
,
U.
,
2007
, “
Overview No.144–Mechanical Behavior of Amorphous Alloys
,”
Acta Mater.
,
55
(
12
), pp.
4067
4109
.10.1016/j.actamat.2007.01.052
32.
Wu
,
W. F.
,
Li
,
Y.
, and
Schuh
,
C. A.
,
2008
, “
Strength, Plasticity and Brittleness of Bulk Metallic Glasses Under Compression: Statistical and Geometric Effects
,”
Philos. Mag.
,
88
(
1
), pp.
71
89
.10.1080/14786430701762619
33.
Yao
,
J. H.
,
Wang
,
J. Q.
,
Lu
,
L.
, and
Li
,
Y.
,
2008
, “
High Tensile Strength Reliability in a Bulk Metallic Glass
,”
Appl. Phys. Lett.
,
92
(
4
), p.
041905
.10.1063/1.2838715
34.
Courtney
,
T. H.
,
1990
,
Mechanical Behavior of Materials
,
McGraw-Hill
,
New York
.
35.
Sun
,
B. A.
, and
Wang
,
W. H.
,
2015
, “
The Fracture of Bulk Metallic Glasses
,”
Prog. Mater. Sci.
,
74
, pp.
211
307
.10.1016/j.pmatsci.2015.05.002
36.
Sha
,
Z. D.
,
He
,
L. C.
,
Xu
,
S.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Zhang
,
Y. W.
, and
Wang
,
T. J.
,
2014
, “
Effect of Aspect Ratio on the Mechanical Properties of Metallic Glasses
,”
Scr. Mater.
,
93
, pp.
36
39
.10.1016/j.scriptamat.2014.08.025
37.
Argon
,
A. S.
,
1979
, “
Plastic Deformation in Metallic Glasses
,”
Acta Metall.
,
27
(
1
), pp.
47
58
.10.1016/0001-6160(79)90055-5
38.
Greer
,
A. L.
, and
Ma
,
E.
,
2007
, “
Bulk Metallic Glasses: At the Cutting Edge of Metals Research
,”
MRS Bull.
,
32
(
8
), pp.
611
619
.10.1557/mrs2007.121
39.
Greer
,
A. L.
,
2009
, “
Metallic Glasses…on the Threshold
,”
Mater. Today
,
12
(
1–2
), pp.
14
22
.10.1016/S1369-7021(09)70037-9
40.
Löffler
,
J. F.
,
2003
, “
Bulk Metallic Glasses
,”
Intermetallics
,
11
(
6
), pp.
529
540
.10.1016/S0966-9795(03)00046-3
41.
He
,
Q.
, and
Xu
,
J.
,
2012
, “
Locating Malleable Bulk Metallic Glasses in Zr–Ti–Cu–Al Alloys With Calorimetric Glass Transition Temperature as an Indicator
,”
J. Mater. Sci. Technol.
,
28
(
12
), pp.
1109
1122
.10.1016/S1005-0302(12)60180-7
42.
Conner
,
R. D.
,
Johnson
,
W. L.
,
Paton
,
N. E.
, and
Nix
,
W. D.
,
2003
, “
Shear Bands and Cracking of Metallic Glass Plates in Bending
,”
J. Appl. Phys.
,
94
(
2
), pp.
904
911
.10.1063/1.1582555
43.
Conner
,
R. D.
,
Li
,
Y.
,
Nix
,
W. D.
, and
Johnson
,
W. L.
,
2004
, “
Shear Band Spacing Under Bending of Zr-Based Metallic Glass Plates
,”
Acta Mater.
,
52
(
8
), pp.
2429
2434
.10.1016/j.actamat.2004.01.034
44.
Yavari
,
A. R.
,
Lewandowski
,
J. J.
, and
Eckert
,
J.
,
2007
, “
Mechanical Properties of Bulk Metallic Glasses
,”
MRS Bull.
,
32
(
8
), pp.
635
638
.10.1557/mrs2007.125
45.
Maaß
,
R.
, and
Löffler
,
J. F.
,
2015
, “
Shear-Band Dynamics in Metallic Glasses
,”
Adv. Funct. Mater.
,
25
(
16
), pp.
2353
2368
.10.1002/adfm.201404223
46.
Qiao
,
J.
,
Jia
,
H.
, and
Liaw
,
P. K.
,
2016
, “
Metallic Glass Matrix Composites
,”
Mater. Sci. Eng. R-Rep.
,
100
, pp.
1
69
.10.1016/j.mser.2015.12.001
47.
Schroers
,
J.
, and
Johnson
,
W. L.
,
2004
, “
Ductile Bulk Metallic Glass
,”
Phys. Rev. Lett.
,
93
(
25
), p.
255506
.10.1103/PhysRevLett.93.255506
48.
Das
,
J.
,
Tang
,
M. B.
,
Kim
,
K. B.
,
Theissmann
,
R.
,
Baier
,
F.
,
Wang
,
W. H.
, and
Eckert
,
J.
,
2005
, “
Work-Hardenable” Ductile Bulk Metallic Glass
,”
Phys. Rev. Lett.
,
94
(
20
), p.
205501
.10.1103/PhysRevLett.94.205501
49.
Jiang
,
M. Q.
,
Ling
,
Z.
,
Meng
,
J. X.
, and
Dai
,
L. H.
,
2008
, “
Energy Dissipation in Fracture of Bulk Metallic Glasses Via Inherent Competition Between Local Softening and Quasi-Cleavage
,”
Philos. Mag.
,
88
(
3
), pp.
407
426
.10.1080/14786430701864753
50.
Qu
,
R. T.
,
Liu
,
Z. Q.
,
Wang
,
G.
, and
Zhang
,
Z. F.
,
2015
, “
Progressive Shear Band Propagation in Metallic Glasses Under Compression
,”
Acta Mater.
,
91
, pp.
19
33
.10.1016/j.actamat.2015.03.026
51.
Liu
,
Y. H.
,
Wang
,
G.
,
Wang
,
R. J.
,
Zhao
,
D. Q.
,
Pan
,
M. X.
, and
Wang
,
W. H.
,
2007
, “
Super Plastic Bulk Metallic Glasses at Room Temperature
,”
Science
,
315
(
5817
), pp.
1385
1388
.10.1126/science.1136726
52.
Han
,
Z.
,
Wu
,
W. F.
,
Li
,
Y.
,
Wei
,
Y. J.
, and
Gao
,
H. J.
,
2009
, “
An Instability Index of Shear Band for Plasticity in Metallic Glasses
,”
Acta Mater.
,
57
(
5
), pp.
1367
1372
.10.1016/j.actamat.2008.11.018
53.
Choi-Yim
,
H.
, and
Johnson
,
W. L.
,
1997
, “
Bulk Metallic Glass Matrix Composites
,”
Appl. Phys. Lett.
,
71
(
26
), pp.
3808
3810
.10.1063/1.120512
54.
He
,
G.
,
Eckert
,
J.
,
Loser
,
W.
, and
Schultz
,
L.
,
2003
, “
Novel Ti-Base Nanostructure-Dendrite Composite With Enhanced Plasticity
,”
Nat. Mater.
,
2
(
1
), pp.
33
37
.10.1038/nmat792
55.
Chen
,
L. Y.
,
Fu
,
Z. D.
,
Zhang
,
G. Q.
,
Hao
,
X. P.
,
Jiang
,
Q. K.
,
Wang
,
X. D.
,
Cao
,
Q. P.
, et al.,
2008
, “
New Class of Plastic Bulk Metallic Glass
,”
Phys. Rev. Lett.
,
100
(
7
), p.
075501
.10.1103/PhysRevLett.100.075501
56.
Wu
,
Y.
,
Xiao
,
Y.
,
Chen
,
G.
,
Liu
,
C. T.
, and
Lu
,
Z.
,
2010
, “
Bulk Metallic Glass Composites With Transformation-Mediated Work-Hardening and Ductility
,”
Adv. Mater.
,
22
(
25
), pp.
2770
2773
.10.1002/adma.201000482
57.
Zhe
,
F.
,
Jin
,
L.
,
Yingchao
,
Y.
,
Jian
,
W.
,
Qiang
,
L.
,
Sichuang
,
X.
,
Haiyan
,
W.
,
Jun
,
L.
, and
Xinghang
,
Z.
,
2017
, “
Ductile Fracture of Metallic Glass Nanolaminates
,”
Adv. Mater. Interfaces
,
4
(
21
), p.
1700510
.10.1002/admi.201700510
58.
Hays
,
C. C.
,
Kim
,
C. P.
, and
Johnson
,
W. L.
,
2000
, “
Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in Situ Formed Ductile Phase Dendrite Dispersions
,”
Phys. Rev. Lett.
,
84
(
13
), pp.
2901
2904
.10.1103/PhysRevLett.84.2901
59.
Pauly
,
S.
,
Gorantla
,
S.
,
Wang
,
G.
,
Kuhn
,
U.
, and
Eckert
,
J.
,
2010
, “
Transformation-Mediated Ductility in CuZr-Based Bulk Metallic Glasses
,”
Nat. Mater.
,
9
(
6
), pp.
473
477
.10.1038/nmat2767
60.
Hofmann
,
D. C.
,
Suh
,
J. Y.
,
Wiest
,
A.
,
Duan
,
G.
,
Lind
,
M. L.
,
Demetriou
,
M. D.
, and
Johnson
,
W. L.
,
2008
, “
Designing Metallic Glass Matrix Composites With High Toughness and Tensile Ductility
,”
Nat.
,
451
(
7182
), pp.
1085
1089
.10.1038/nature06598
61.
Kim
,
J. Y.
,
Jang
,
D. C.
, and
Greer
,
J. R.
,
2011
, “
Nanolaminates Utilizing Size-Dependent Homogeneous Plasticity of Metallic Glasses
,”
Adv. Funct. Mater.
,
21
(
23
), pp.
4550
4554
.10.1002/adfm.201101164
62.
Kim
,
J. Y.
,
Gu
,
X.
,
Wraith
,
M.
,
Uhl
,
J. T.
,
Dahmen
,
K. A.
, and
Greer
,
J. R.
,
2012
, “
Suppression of Catastrophic Failure in Metallic Glass-Polyisoprene Nanolaminate Containing Nanopillars
,”
Adv. Funct. Mater.
,
22
(
9
), pp.
1972
1980
.10.1002/adfm.201103050
63.
Sha
,
Z. D.
,
She
,
C. M.
,
Xu
,
G. K.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Wang
,
T. J.
, and
Gao
,
H. J.
,
2017
, “
Metallic Glass-Based Chiral Nanolattice: Light Weight, Auxeticity, and Superior Mechanical Properties
,”
Mater. Today
,
20
(
10
), pp.
569
576
.10.1016/j.mattod.2017.10.001
64.
Qiao
,
J. C.
,
Wang
,
Q.
,
Pelletier
,
J. M.
,
Kato
,
H.
,
Casalini
,
R.
,
Crespo
,
D.
,
Pineda
,
E.
,
Yao
,
Y.
, and
Yang
,
Y.
,
2019
, “
Structural Heterogeneities and Mechanical Behavior of Amorphous Alloys
,”
Prog. Mater. Sci.
,
104
, pp.
250
329
.10.1016/j.pmatsci.2019.04.005
65.
Yi
,
J.
,
Wang
,
W. H.
, and
Lewandowski
,
J. J.
,
2015
, “
Guiding and Deflecting Cracks in Bulk Metallic Glasses to Increase Damage Tolerance
,”
Adv. Eng. Mater.
,
17
(
5
), pp.
620
625
.10.1002/adem.201400209
66.
Sun
,
Y.
,
Concustell
,
A.
, and
Greer
,
A. L.
,
2016
, “
Thermomechanical Processing of Metallic Glasses: Extending the Range of the Glassy State
,”
Nat. Rev. Mater.
,
1
(
9
), p.
16039
.10.1038/natrevmats.2016.39
67.
Tang
,
Y.
,
Zhou
,
H. F.
,
Lu
,
H. M.
,
Wang
,
X. D.
,
Cao
,
Q. P.
,
Zhang
,
D. X.
,
Yang
,
W.
, and
Jiang
,
J. Z.
,
2022
, “
Extra Plasticity Governed by Shear Band Deflection in Gradient Metallic Glasses
,”
Nat. Commun.
,
13
(
1
), p.
2120
.10.1038/s41467-022-29821-4
68.
Wu
,
Y.
,
Cao
,
D.
,
Yao
,
Y.
,
Zhang
,
G.
,
Wang
,
J.
,
Liu
,
L.
,
Li
,
F.
, et al.,
2021
, “
Substantially Enhanced Plasticity of Bulk Metallic Glasses by Densifying Local Atomic Packing
,”
Nat. Commun.
,
12
(
1
), p.
6582
.10.1038/s41467-021-26858-9
69.
Luo
,
L. S.
,
Wang
,
B. B.
,
Dong
,
F. Y.
,
Su
,
Y. Q.
,
Guo
,
E. Y.
,
Xu
,
Y. J.
,
Wang
,
M. Y.
, et al.,
2019
, “
Structural Origins for the Generation of Strength, Ductility and Toughness in Bulk-Metallic Glasses Using Hydrogen Microalloying
,”
Acta Mater.
,
171
, pp.
216
230
.10.1016/j.actamat.2019.04.022
70.
Liontas
,
R.
,
Gu
,
X. W.
,
Fu
,
E.
,
Wang
,
Y.
,
Li
,
N.
,
Mara
,
N.
, and
Greer
,
J. R.
,
2014
, “
Effects of Helium Implantation on the Tensile Properties and Microstructure of Ni73P27 Metallic Glass Nanostructures
,”
Nano Lett.
,
14
(
9
), pp.
5176
5183
.10.1021/nl502074d
71.
Ketov
,
S. V.
,
Sun
,
Y. H.
,
Nachum
,
S.
,
Lu
,
Z.
,
Checchi
,
A.
,
Beraldin
,
A. R.
,
Bai
,
H. Y.
,
Wang
,
W. H.
,
Louzguine-Luzgin
,
D. V.
,
Carpenter
,
M. A.
, and
Greer
,
A. L.
,
2015
, “
Rejuvenation of Metallic Glasses by Non-Affine Thermal Strain
,”
Nature
,
524
(
7564
), pp.
200
203
.10.1038/nature14674
72.
Ebner
,
C.
,
Rajagopalan
,
J.
,
Lekka
,
C.
, and
Rentenberger
,
C.
,
2019
, “
Electron Beam Induced Rejuvenation in a Metallic Glass Film During in-Situ TEM Tensile Straining
,”
Acta Mater.
,
181
, pp.
148
159
.10.1016/j.actamat.2019.09.033
73.
Wang
,
C.
,
Yang
,
Z. Z.
,
Ma
,
T.
,
Sun
,
Y. T.
,
Yin
,
Y. Y.
,
Gong
,
Y.
,
Gu
,
L.
,
Wen
,
P.
,
Zhu
,
P. W.
,
Long
,
Y. W.
,
Yu
,
X. H.
,
Jin
,
C. Q.
,
Wang
,
W. H.
, and
Bai
,
H. Y.
,
2017
, “
High Stored Energy of Metallic Glasses Induced by High Pressure
,”
Appl. Phys. Lett.
,
110
(
11
), p.
111901
.10.1063/1.4978600
74.
Gleiter
,
H.
,
2008
, “
Nanoglasses: A Way to Solid Materials With Tunable Atomic Structures and Properties
,”
Mater. Sci. Forum
,
584–586
, pp.
41
48
.10.4028/www.scientific.net/MSF.584-586.41
75.
Ritter
,
Y.
,
Şopu
,
D.
,
Gleiter
,
H.
, and
Albe
,
K.
,
2011
, “
Structure, Stability and Mechanical Properties of Internal Interfaces in Cu64Zr36 Nanoglasses Studied by MD Simulations
,”
Acta Mater.
,
59
(
17
), pp.
6588
6593
.10.1016/j.actamat.2011.07.013
76.
Fang
,
J. X.
,
Vainio
,
U.
,
Puff
,
W.
,
Wurschum
,
R.
,
Wang
,
X. L.
,
Wang
,
D.
,
Ghafari
,
M.
,
Jiang
,
F.
,
Sun
,
J.
,
Hahn
,
H.
, and
Gleiter
,
H.
,
2012
, “
Atomic Structure and Structural Stability of Sc75Fe25 Nanoglasses
,”
Nano Lett.
,
12
(
1
), pp.
458
463
.10.1021/nl2038216
77.
Adibi
,
S.
,
Sha
,
Z. D.
,
Branicio
,
P. S.
,
Joshi
,
S. P.
,
Liu
,
Z. S.
, and
Zhang
,
Y. W.
,
2013
, “
A Transition From Localized Shear Banding to Homogeneous Superplastic Flow in Nanoglass
,”
Appl. Phys. Lett.
,
103
(
21
), p.
211905
.10.1063/1.4833018
78.
Sha
,
Z. D.
,
He
,
L. C.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Zhang
,
Y. W.
, and
Wang
,
T. J.
,
2014
, “
The Mechanical Properties of a Nanoglass/Metallic Glass/Nanoglass Sandwich Structure
,”
Scr. Mater.
,
83
, pp.
37
40
.10.1016/j.scriptamat.2014.04.009
79.
Wang
,
X. L.
,
Jiang
,
F.
,
Hahn
,
H.
,
Li
,
J.
,
Gleiter
,
H.
,
Sun
,
J.
, and
Fang
,
J. X.
,
2015
, “
Plasticity of a Scandium-Based Nanoglass
,”
Scr. Mater.
,
98
, pp.
40
43
.10.1016/j.scriptamat.2014.11.010
80.
Sha
,
Z. D.
,
Branicio
,
P. S.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Lee
,
H. P.
,
Tay
,
T. E.
, and
Wang
,
T. J.
,
2015
, “
Strong and Superplastic Nanoglass
,”
Nanoscale
,
7
(
41
), pp.
17404
17409
.10.1039/C5NR04740D
81.
Karmakar
,
B.
,
Sasmal
,
N.
, and
Garai
,
M.
,
2016
,
Nanoglass and Nanostructured Chalcogenide Glasses
,
William Andrew Publishing
,
Boston, MA
.
82.
Sha
,
Z. D.
,
Branicio
,
P. S.
,
Lee
,
H. P.
, and
Tay
,
T. E.
,
2017
, “
Strong and Ductile Nanolaminate Composites Combining Metallic Glasses and Nanoglasses
,”
Int. J. Plast.
,
90
, pp.
231
241
.10.1016/j.ijplas.2017.01.010
83.
Wang
,
Z. T.
,
Pan
,
J.
,
Li
,
Y.
, and
Schuh
,
C. A.
,
2013
, “
Densification and Strain Hardening of a Metallic Glass Under Tension at Room Temperature
,”
Phys. Rev. Lett.
,
111
(
13
), p.
135504
.10.1103/PhysRevLett.111.135504
84.
Pan
,
J.
,
Wang
,
Y. X.
, and
Li
,
Y.
,
2017
, “
Ductile Fracture in Notched Bulk Metallic Glasses
,”
Acta Mater.
,
136
, pp.
126
133
.10.1016/j.actamat.2017.06.048
85.
Sha
,
Z. D.
,
Pei
,
Q. X.
,
Liu
,
Z. S.
,
Zhang
,
Y. W.
, and
Wang
,
T. J.
,
2015
, “
Necking and Notch Strengthening in Metallic Glass With Symmetric Sharp-and-Deep Notches
,”
Sci. Rep.
,
5
, p.
10797
.10.1038/srep10797
86.
Pan
,
J.
,
Zhou
,
H. F.
,
Wang
,
Z. T.
,
Li
,
Y.
, and
Gao
,
H. J.
,
2015
, “
Origin of Anomalous Inverse Notch Effect in Bulk Metallic Glasses
,”
J. Mech. Phys. Solids
,
84
, pp.
85
94
.10.1016/j.jmps.2015.07.006
87.
Lei
,
X.
,
Li
,
C.
,
Shi
,
X.
,
Xu
,
X.
, and
Wei
,
Y.
,
2015
, “
Notch Strengthening or Weakening Governed by Transition of Shear Failure to Normal Mode Fracture
,”
Sci. Rep.
,
5
, p.
10537
.10.1038/srep10537
88.
Pan
,
J.
,
Wang
,
Y. X.
,
Guo
,
Q.
,
Zhang
,
D.
,
Greer
,
A. L.
, and
Li
,
Y.
,
2018
, “
Extreme Rejuvenation and Softening in a Bulk Metallic Glass
,”
Nat. Commun.
,
9
(
1
), pp.
560
568
.10.1038/s41467-018-02943-4
89.
Sha
,
Z. D.
,
Teng
,
Y.
,
Poh
,
L. H.
,
Pei
,
Q.
,
Xing
,
G.
, and
Gao
,
H.
,
2019
, “
Notch Strengthening in Nanoscale Metallic Glasses
,”
Acta Mater.
,
169
, pp.
147
154
.10.1016/j.actamat.2019.02.044
90.
Rys
,
J.
,
Valdevit
,
L.
,
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Carter
,
W. B.
, and
Greer
,
J. R.
,
2014
, “
Fabrication and Deformation of Metallic Glass Micro-Lattices
,”
Adv. Eng. Mater.
,
16
(
7
), pp.
889
896
.10.1002/adem.201300454
91.
Lee
,
S. W.
,
Jafary-Zadeh
,
M.
,
Chen
,
D. Z.
,
Zhang
,
Y. W.
, and
Greer
,
J. R.
,
2015
, “
Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures
,”
Nano Lett.
,
15
(
9
), pp.
5673
5681
.10.1021/acs.nanolett.5b01034
92.
Lin
,
W. H.
,
Teng
,
Y.
,
Sha
,
Z. D.
,
Yuan
,
S. Y.
, and
Branicio
,
P. S.
,
2020
, “
Mechanical Properties of Nanoporous Metallic Glasses: Insights From Large-Scale Atomic Simulations
,”
Int. J. Plast.
,
127
, p.
102657
.10.1016/j.ijplas.2019.102657
93.
Zhang
,
Y.
,
Wang
,
W. H.
, and
Greer
,
A. L.
,
2006
, “
Making Metallic Glasses Plastic by Control of Residual Stress
,”
Nat. Mater.
,
5
(
11
), pp.
857
860
.10.1038/nmat1758
94.
Küchemann
,
S.
,
Derlet
,
P. M.
,
Liu
,
C.
,
Rosenthal
,
D.
,
Sparks
,
G.
,
Larson
,
W. S.
, and
Maaß
,
R.
,
2018
, “
Energy Storage in Metallic Glasses Via Flash Annealing
,”
Adv. Funct. Mater.
,
28
(
50
), p.
1805385
.10.1002/adfm.201805385
95.
Ma
,
E.
, and
Ding
,
J.
,
2016
, “
Tailoring Structural Inhomogeneities in Metallic Glasses to Enable Tensile Ductility at Room Temperature
,”
Mater. Today
,
19
(
10
), pp.
568
579
.10.1016/j.mattod.2016.04.001
96.
Wang
,
N.
,
Ding
,
J.
,
Yan
,
F.
,
Asta
,
M.
,
Ritchie
,
R. O.
, and
Li
,
L.
,
2018
, “
Spatial Correlation of Elastic Heterogeneity Tunes the Deformation Behavior of Metallic Glasses
,”
NPJ Comput. Mater.
,
4
(
1
), p.
19
.10.1038/s41524-018-0077-8
97.
Li
,
H.
,
Jin
,
C.-G.
, and
Sha
,
Z.-D.
,
2022
, “
The Effect of Pressure-Promoted Thermal Rejuvenation on the Fracture Energy of Metallic Glasses
,”
J. Non-Cryst. Solids
,
590
, p.
121674
.10.1016/j.jnoncrysol.2022.121674
98.
Wang
,
W. H.
,
2019
, “
Dynamic Relaxations and Relaxation-Property Relationships in Metallic Glasses
,”
Prog. Mater. Sci.
,
106
, p.
100561
.10.1016/j.pmatsci.2019.03.006
99.
Ketkaew
,
J.
,
Yamada
,
R.
,
Wang
,
H.
,
Kuldinow
,
D.
,
Schroers
,
B. S.
,
Dmowski
,
W.
,
Egami
,
T.
, and
Schroers
,
J.
,
2020
, “
The Effect of Thermal Cycling on the Fracture Toughness of Metallic Glasses
,”
Acta Mater.
,
184
, pp.
100
108
.10.1016/j.actamat.2019.11.046
100.
Yuan
,
X.
,
Şopu
,
D.
,
Spieckermann
,
F.
,
Song
,
K. K.
,
Ketov
,
S. V.
,
Prashanth
,
K. G.
, and
Eckert
,
J.
,
2022
, “
Maximizing the Degree of Rejuvenation in Metallic Glasses
,”
Scr. Mater.
,
212
, p.
114575
.10.1016/j.scriptamat.2022.114575
101.
Lai
,
Y. H.
,
Lee
,
C. J.
,
Cheng
,
Y. T.
,
Chou
,
H. S.
,
Chen
,
H. M.
,
Du
,
X. H.
,
Chang
,
C. I.
,
Huang
,
J. C.
,
Jian
,
S. R.
,
Jang
,
J. S. C.
, and
Nieh
,
T. G.
,
2008
, “
Bulk and Microscale Compressive Behavior of a Zr-Based Metallic Glass
,”
Scr. Mater.
,
58
(
10
), pp.
890
893
.10.1016/j.scriptamat.2008.01.009
102.
Magagnosc
,
D. J.
,
Kumar
,
G.
,
Schroers
,
J.
,
Felfer
,
P.
,
Cairney
,
J. M.
, and
Gianola
,
D. S.
,
2014
, “
Effect of Ion Irradiation on Tensile Ductility, Strength and Fictive Temperature in Metallic Glass Nanowires
,”
Acta Mater.
,
74
, pp.
165
182
.10.1016/j.actamat.2014.04.002
103.
Ding
,
G.
,
Li
,
C.
,
Zaccone
,
A.
,
Wang
,
W. H.
,
Lei
,
H. C.
,
Jiang
,
F.
,
Ling
,
Z.
, and
Jiang
,
M. Q.
,
2019
, “
Ultrafast Extreme Rejuvenation of Metallic Glasses by Shock Compression
,”
Sci. Adv.
,
5
(
8
), p.
eaaw6249
.10.1126/sciadv.aaw6249
104.
Albe
,
K.
,
Ritter
,
Y.
, and
Şopu
,
D.
,
2013
, “
Enhancing the Plasticity of Metallic Glasses: Shear Band Formation, Nanocomposites and Nanoglasses Investigated by Molecular Dynamics Simulations
,”
Mech. Mater.
,
67
, pp.
94
103
.10.1016/j.mechmat.2013.06.004
105.
Cheng
,
Z.
,
Zhou
,
H.
,
Lu
,
Q.
,
Gao
,
H.
, and
Lu
,
L.
,
2018
, “
Extra Strengthening and Work Hardening in Gradient Nanotwinned Metals
,”
Science
,
362
(
6414
), p.
eaau1925
.10.1126/science.aau1925
106.
Fang
,
T. H.
,
Li
,
W. L.
,
Tao
,
N. R.
, and
Lu
,
K.
,
2011
, “
Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper
,”
Science
,
331
(
6024
), pp.
1587
1590
.10.1126/science.1200177
107.
Ma
,
E.
, and
Zhu
,
T.
,
2017
, “
Towards Strength–Ductility Synergy Through the Design of Heterogeneous Nanostructures in Metals
,”
Mater. Today
,
20
(
6
), pp.
323
331
.10.1016/j.mattod.2017.02.003
108.
Yuan
,
S.
, and
Branicio
,
P. S.
,
2020
, “
Gradient Microstructure Induced Shear Band Constraint, Delocalization, and Delayed Failure in CuZr Nanoglasses
,”
Int. J. Plast.
,
134
, p.
102845
.10.1016/j.ijplas.2020.102845
109.
Chen
,
Y.
,
Ding
,
J.
, and
Sha
,
Z. D.
,
2022
, “
Grain Size and Heterophase Effects on Mechanical Properties of Mg-Cu Nanoglasses
,”
Front. Mater.
,
9
, p.
908592
.10.3389/fmats.2022.908952
110.
Yuan
,
S.
, and
Branicio
,
P. S.
,
2021
, “
Tuning the Mechanical Properties of Nanoglass-Metallic Glass Composites With Brick and Mortar Designs
,”
Scr. Mater.
,
194
, p.
113639
.10.1016/j.scriptamat.2020.113639
111.
Gao
,
H. J.
,
Ji
,
B. H.
,
Jager
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
10
), pp.
5597
5600
.10.1073/pnas.0631609100
112.
Sha
,
Z. D.
,
Pei
,
Q. X.
,
Sorkin
,
V.
,
Branicio
,
P. S.
,
Zhang
,
Y. W.
, and
Gao
,
H. J.
,
2013
, “
On the Notch Sensitivity of CuZr Metallic Glasses
,”
Appl. Phys. Lett.
,
103
(
8
), p.
081903
.10.1063/1.4819099
113.
Zheng
,
X. L.
,
Wang
,
H.
,
Zheng
,
M. S.
, and
Wang
,
F. H.
,
2008
,
Notch Strength and Notch Sensitivity of Materials
,
Science Press
,
Beijing, China
.
114.
Flores
,
K. M.
, and
Dauskardt
,
R. H.
,
2001
, “
Mean Stress Effects on Flow Localization and Failure in a Bulk Metallic Glass
,”
Acta Mater.
,
49
(
13
), pp.
2527
2537
.10.1016/S1359-6454(01)00125-2
115.
Gu
,
X. W.
,
Jafary-Zadeh
,
M.
,
Chen
,
D. Z.
,
Wu
,
Z.
,
Zhang
,
Y. W.
,
Srolovitz
,
D. J.
, and
Greer
,
J. R.
,
2014
, “
Mechanisms of Failure in Nanoscale Metallic Glass
,”
Nano Lett.
,
14
(
10
), pp.
5858
5864
.10.1021/nl5027869
116.
Li
,
W.
,
Bei
,
H.
, and
Gao
,
Y.
,
2016
, “
Effects of Geometric Factors and Shear Band Patterns on Notch Sensitivity in Bulk Metallic Glasses
,”
Intermetallics
,
79
, pp.
12
19
.10.1016/j.intermet.2016.09.001
117.
Zhao
,
J. X.
,
Qu
,
R. T.
,
Wu
,
F. F.
,
Li
,
S. X.
, and
Zhang
,
Z. F.
,
2010
, “
Enhanced Plastic Deformation in a Metallic Glass Induced by Notches
,”
Philos. Mag. Lett.
,
90
(
12
), pp.
875
882
.10.1080/09500839.2010.512573
118.
Qu
,
R. T.
,
Calin
,
M.
,
Eckert
,
J.
, and
Zhang
,
Z. F.
,
2012
, “
Metallic Glasses: Notch-Insensitive Materials
,”
Scr. Mater.
,
66
(
10
), pp.
733
736
.10.1016/j.scriptamat.2012.01.044
119.
Qu
,
R. T.
,
Zhao
,
J. X.
,
Stoica
,
M.
,
Eckert
,
J.
, and
Zhang
,
Z. F.
,
2012
, “
Macroscopic Tensile Plasticity of Bulk Metallic Glass Through Designed Artificial Defects
,”
Mater. Sci. Eng. A-Struct.
,
534
, pp.
365
373
.10.1016/j.msea.2011.11.082
120.
Qu
,
R.
,
Zhang
,
P.
, and
Zhang
,
Z.
,
2014
, “
Notch Effect of Materials: Strengthening or Weakening
,”
J. Mater. Sci. Technol.
,
30
(
6
), pp.
599
608
.10.1016/j.jmst.2014.04.014
121.
Pan
,
J.
,
Ivanov
,
Y. P.
,
Zhou
,
W. H.
,
Li
,
Y.
, and
Greer
,
A. L.
,
2020
, “
Strain-Hardening and Suppression of Shear-Banding in Rejuvenated Bulk Metallic Glass
,”
Nature
,
578
(
7796
), pp.
559
562
.10.1038/s41586-020-2016-3
122.
Sarac
,
B.
,
Ketkaew
,
J.
,
Popnoe
,
D. O.
, and
Schroers
,
J.
,
2012
, “
Honeycomb Structures of Bulk Metallic Glasses
,”
Adv. Funct. Mater.
,
22
(
15
), pp.
3161
3169
.10.1002/adfm.201200539
123.
Sarac
,
B.
, and
Schroers
,
J.
,
2013
, “
From Brittle to Ductile: Density Optimization for Zr-BMG Cellular Structures
,”
Scr. Mater.
,
68
(
12
), pp.
921
924
.10.1016/j.scriptamat.2013.02.030
124.
Sarac
,
B.
, and
Schroers
,
J.
,
2013
, “
Designing Tensile Ductility in Metallic Glasses
,”
Nat. Commun.
,
4
, p.
2158
.10.1038/ncomms3158
125.
Liu
,
Z.
,
Chen
,
W.
,
Carstensen
,
J.
,
Ketkaew
,
J.
,
Ojeda Mota
,
R. M.
,
Guest
,
J. K.
, and
Schroers
,
J.
,
2016
, “
3D Metallic Glass Cellular Structures
,”
Acta Mater.
,
105
, pp.
35
43
.10.1016/j.actamat.2015.11.057
126.
Liu
,
Z.
,
2017
, “
One-Step Fabrication of Crystalline Metal Nanostructures by Direct Nanoimprinting Below Melting Temperatures
,”
Nat. Commun.
,
8
, p.
14910
.10.1038/ncomms14910
127.
Gibson
,
M. A.
,
Mykulowycz
,
N. M.
,
Shim
,
J.
,
Fontana
,
R.
,
Schmitt
,
P.
,
Roberts
,
A.
,
Ketkaew
,
J.
, et al.,
2018
, “
3D Printing Metals Like Thermoplastics: Fused Filament Fabrication of Metallic Glasses
,”
Mater. Today
,
21
(
7
), pp.
697
702
.10.1016/j.mattod.2018.07.001
128.
Jang
,
D.
, and
Greer
,
J. R.
,
2010
, “
Transition From a Strong-yet-Brittle to a Stronger-and-Ductile State by Size Reduction of Metallic Glasses
,”
Nat. Mater.
,
9
(
3
), pp.
215
219
.10.1038/nmat2622
129.
Liontas
,
R.
, and
Greer
,
J. R.
,
2017
, “
3D Nano-Architected Metallic Glass: Size Effect Suppresses Catastrophic Failure
,”
Acta Mater.
,
133
, pp.
393
407
.10.1016/j.actamat.2017.05.019
130.
Tian
,
L.
,
Shan
,
Z. W.
, and
Ma
,
E.
,
2013
, “
Ductile Necking Behavior of Nanoscale Metallic Glasses Under Uniaxial Tension at Room Temperature
,”
Acta Mater.
,
61
(
13
), pp.
4823
4830
.10.1016/j.actamat.2013.05.001
131.
Wang
,
C. C.
,
Ding
,
J.
,
Cheng
,
Y. Q.
,
Wan
,
J. C.
,
Tian
,
L.
,
Sun
,
J.
,
Shan
,
Z. W.
,
Li
,
J.
, and
Ma
,
E.
,
2012
, “
Sample Size Matters for Al88Fe7Gd5 Metallic Glass: Smaller is Stronger
,”
Acta Mater.
,
60
(
13–14
), pp.
5370
5379
.10.1016/j.actamat.2012.06.019
132.
Jang
,
D.
,
Gross
,
C. T.
, and
Greer
,
J. R.
,
2011
, “
Effects of Size on the Strength and Deformation Mechanism in Zr-Based Metallic Glasses
,”
Int. J. Plast.
,
27
(
6
), pp.
858
867
.10.1016/j.ijplas.2010.09.010
133.
Liontas
,
R.
,
Jafary-Zadeh
,
M.
,
Zeng
,
Q.
,
Zhang
,
Y.
,
Mao
,
W. L.
, and
Greer
,
J. R.
,
2016
, “
Substantial Tensile Ductility in Sputtered Zr-Ni-Al Nano-Sized Metallic Glass
,”
Acta Mater.
,
118
, pp.
270
285
.10.1016/j.actamat.2016.07.050
134.
Dai
,
L. H.
,
2012
,
Shear Banding in Bulk Metallic Glasses
,
Elsevier Science
,
Amsterdam, The Netherlands
.
135.
Alderson
,
A.
,
Alderson
,
K. L.
,
Attard
,
D.
,
Evans
,
K. E.
,
Gatt
,
R.
,
Grima
,
J. N.
,
Miller
,
W.
,
Ravirala
,
N.
,
Smith
,
C. W.
, and
Zied
,
K.
,
2010
, “
Elastic Constants of 3-, 4- and 6-Connected Chiral and Anti-Chiral Honeycombs Subject to Uniaxial in-Plane Loading
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1042
1048
.10.1016/j.compscitech.2009.07.009
136.
Spadoni
,
A.
, and
Ruzzene
,
M.
,
2012
, “
Elasto-Static Micropolar Behavior of a Chiral Auxetic Lattice
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
156
171
.10.1016/j.jmps.2011.09.012
137.
Mousanezhad
,
D.
,
Haghpanah
,
B.
,
Ghosh
,
R.
,
Hamouda
,
A. M.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2016
, “
Elastic Properties of Chiral, Anti-Chiral, and Hierarchical Honeycombs: A Simple Energy-Based Approach
,”
Theory Appl. Mech. Lett.
,
6
(
2
), pp.
81
96
.10.1016/j.taml.2016.02.004
138.
Sha
,
Z. D.
,
Lin
,
W. H.
,
Poh
,
L. H.
,
Xing
,
G.
,
Liu
,
Z.
,
Wang
,
T.
, and
Gao
,
H.
,
2020
, “
Fatigue of Metallic Glasses
,”
ASME Appl. Mech. Rev.
,
72
(
5
), p.
050801
.10.1115/1.4048056
139.
Ma
,
E.
,
2015
, “
Tuning Order in Disorder
,”
Nat. Mater.
,
14
(
6
), pp.
547
552
.10.1038/nmat4300
140.
Schroers
,
J.
,
2010
, “
Processing of Bulk Metallic Glass
,”
Adv. Mater.
,
22
(
14
), pp.
1566
1597
.10.1002/adma.200902776
141.
Peker
,
A.
, and
Johnson
,
W. L.
,
1993
, “
A Highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5
,”
Appl. Phys. Lett.
,
63
(
17
), pp.
2342
2344
.10.1063/1.110520
142.
Lu
,
Z. P.
, and
Liu
,
C. T.
,
2003
, “
Glass Formation Criterion for Various Glass-Forming Systems
,”
Phys. Rev. Lett.
,
91
(
11
), p.
115505
.10.1103/PhysRevLett.91.115505
143.
Shen
,
J.
,
Chen
,
Q. J.
,
Sun
,
J. F.
,
Fan
,
H. B.
, and
Wang
,
G.
,
2005
, “
Exceptionally High Glass-Forming Ability of an FeCoCrMoCBY Alloy
,”
Appl. Phys. Lett.
,
86
(
15
), p.
151907
.10.1063/1.1897426
144.
Jiang
,
Q. K.
,
Wang
,
X. D.
,
Nie
,
X. P.
,
Zhang
,
G. Q.
,
Ma
,
H.
,
Fecht
,
H. J.
,
Bendnarcik
,
J.
,
Franz
,
H.
,
Liu
,
Y. G.
,
Cao
,
Q. P.
, and
Jiang
,
J. Z.
,
2008
, “
Zr–(Cu,Ag)–Al Bulk Metallic Glasses
,”
Acta Mater.
,
56
(
8
), pp.
1785
1796
.10.1016/j.actamat.2007.12.030
145.
Lou
,
H. B.
,
Wang
,
X. D.
,
Xu
,
F.
,
Ding
,
S. Q.
,
Cao
,
Q. P.
,
Hono
,
K.
, and
Jiang
,
J. Z.
,
2011
, “
73 mm-Diameter Bulk Metallic Glass Rod by Copper Mould Casting
,”
Appl. Phys. Lett.
,
99
(
5
), p.
051910
.10.1063/1.3621862
146.
Nishiyama
,
N.
,
Takenaka
,
K.
,
Miura
,
H.
,
Saidoh
,
N.
,
Zeng
,
Y.
, and
Inoue
,
A.
,
2012
, “
The World's Biggest Glassy Alloy Ever Made
,”
Intermetallics
,
30
, pp.
19
24
.10.1016/j.intermet.2012.03.020
147.
Lu
,
Z. P.
, and
Liu
,
C. T.
,
2002
, “
A New Glass-Forming Ability Criterion for Bulk Metallic Glasses
,”
Acta Mater.
,
50
(
13
), pp.
3501
3512
.10.1016/S1359-6454(02)00166-0
148.
Lu
,
Z. P.
, and
Liu
,
C. T.
,
2004
, “
Role of Minor Alloying Additions in Formation of Bulk Metallic Glasses: A Review
,”
J. Mater. Sci.
,
39
(
12
), pp.
3965
3974
.10.1023/B:JMSC.0000031478.73621.64
149.
Takeuchi
,
A.
, and
Inoue
,
A.
,
2005
, “
Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element
,”
Mater. Trans.
,
46
(
12
), pp.
2817
2829
.10.2320/matertrans.46.2817
150.
Li
,
Y.
,
Zhao
,
S.
,
Liu
,
Y.
,
Gong
,
P.
, and
Schroers
,
J.
,
2017
, “
How Many Bulk Metallic Glasses Are There
,”
ACS Comb. Sci.
,
19
(
11
), pp.
687
693
.10.1021/acscombsci.7b00048
151.
Sha
,
Z. D.
,
Feng
,
Y. P.
, and
Li
,
Y.
,
2010
, “
Statistical Composition-Structure-Property Correlation and Glass-Forming Ability Based on the Full Icosahedra in Cu–Zr Metallic Glasses
,”
Appl. Phys. Lett.
,
96
(
6
), p.
061903
.10.1063/1.3310278
152.
Sha
,
Z. D.
,
Xu
,
B.
,
Shen
,
L.
,
Zhang
,
A. H.
,
Feng
,
Y. P.
, and
Li
,
Y.
,
2010
, “
The Basic Polyhedral Clusters, the Optimum Glass Formers, and the Composition-Structure-Property (Glass-Forming Ability) Correlation in Cu–Zr Metallic Glasses
,”
J. Appl. Phys.
,
107
(
6
), p.
063508
.10.1063/1.3359683
153.
Ingolfsson
,
H. I.
,
Arnarez
,
C.
,
Periole
,
X.
, and
Marrink
,
S. J.
,
2016
, “
Computational Microscopy of Cellular Membranes
,”
J. Cell Sci.
,
129
(
2
), pp.
257
268
.10.1242/jcs.176040
154.
Curtarolo, S., Hart, G. L. W., Nardelli, M. B., Mingo, N., Sanvito, S., and Levy, O., 2013, “The High-Throughput Highway to Computational Materials Design,”
Nat. Mater.
, 12(3), pp. 191–201.10.1038/NMAT3568
155.
Ruta
,
B.
,
Chushkin
,
Y.
,
Monaco
,
G.
,
Cipelletti
,
L.
,
Pineda
,
E.
,
Bruna
,
P.
,
Giordano
,
V. M.
, and
Gonzalez-Silveira
,
M.
,
2012
, “
Atomic-Scale Relaxation Dynamics and Aging in a Metallic Glass Probed by x-Ray Photon Correlation Spectroscopy
,”
Phys. Rev. Lett.
,
109
(
16
), p.
165701
.10.1103/PhysRevLett.109.165701
156.
Yu
,
H. B.
,
Wang
,
W. H.
,
Bai
,
H. Y.
, and
Samwer
,
K.
,
2014
, “
The β-Relaxation in Metallic Glasses
,”
Natl. Sci. Rev.
,
1
(
3
), pp.
429
461
.10.1093/nsr/nwu018
157.
Giordano
,
V. M.
, and
Ruta
,
B.
,
2016
, “
Unveiling the Structural Arrangements Responsible for the Atomic Dynamics in Metallic Glasses During Physical Aging
,”
Nat. Commun.
,
7
, p.
10344
.10.1038/ncomms10344
158.
Meng
,
F.
,
Tsuchiya
,
K.
,
Yokoyama
.,
Y.
, and
Seiichiro
,
2012
, “
Reversible Transition of Deformation Mode by Structural Rejuvenation and Relaxation in Bulk Metallic Glass
,”
Appl. Phys. Lett.
,
101
(
12
), p.
121914
.10.1063/1.4753998
159.
Wakeda
,
M.
,
Saida
,
J.
,
Li
,
J.
, and
Ogata
,
S.
,
2015
, “
Controlled Rejuvenation of Amorphous Metals With Thermal Processing
,”
Sci. Rep.
,
5
, p.
10545
.10.1038/srep10545
160.
Sun
,
K.
,
Wang
,
G.
,
Wang
,
Y. W.
,
Chen
,
H. C.
,
Yan
,
L.
,
Pauly
,
S.
,
Wu
,
Y. H.
, et al.,
2020
, “
Structural Rejuvenation and Relaxation of a Metallic Glass Induced by Ion Irradiation
,”
Scr. Mater.
,
180
, pp.
34
39
.10.1016/j.scriptamat.2020.01.023
161.
Concustell
,
A.
,
Méar
,
F. O.
,
Suriñach
,
S.
,
Baró
,
M. D.
, and
Greer
,
A. L.
,
2009
, “
Structural Relaxation and Rejuvenation in a Metallic Glass Induced by Shot-Peening
,”
Philos. Mag. Lett.
,
89
(
12
), pp.
831
840
.10.1080/09500830903337919
162.
Miyazaki
,
N.
,
Wakeda
,
M.
,
Wang
,
Y. J.
, and
Ogata
,
S.
,
2016
, “
Prediction of Pressure-Promoted Thermal Rejuvenation in Metallic Glasses
,”
NPJ Comput. Mater.
,
2
(
1
), p.
16013
.10.1038/npjcompumats.2016.13
163.
Suryanarayana
,
C.
,
2012
, “
Mechanical Behavior of Emerging Materials
,”
Mater. Today
,
15
(
11
), pp.
486
498
.10.1016/S1369-7021(12)70218-3
164.
Nishiyama
,
N.
,
Amiya
,
K.
, and
Inoue
,
A.
,
2007
, “
Novel Applications of Bulk Metallic Glass for Industrial Products
,”
J. Non-Cryst. Solids
,
353
(
32–40
), pp.
3615
3621
.10.1016/j.jnoncrysol.2007.05.170
165.
Hess
,
P.
,
Menzel
,
B.
, and
Dauskardt
,
R.
,
2006
, “
Fatigue Damage in Bulk Metallic Glass II: Experiments
,”
Scr. Mater.
,
54
(
3
), pp.
355
361
.10.1016/j.scriptamat.2005.10.007
166.
Cameron
,
K.
, and
Dauskardt
,
R.
,
2006
, “
Fatigue Damage in Bulk Metallic Glass I: Simulation
,”
Scr. Mater.
,
54
(
3
), pp.
349
353
.10.1016/j.scriptamat.2005.10.006
167.
Jang
,
D.
,
Maaß
,
R.
,
Wang
,
G.
,
Liaw
,
P. K.
, and
Greer
,
J. R.
,
2013
, “
Fatigue Deformation of Microsized Metallic Glasses
,”
Scr. Mater.
,
68
(
10
), pp.
773
776
.10.1016/j.scriptamat.2012.12.011
168.
Wang
,
C. C.
,
Mao
,
Y. W.
,
Shan
,
Z. W.
,
Dao
,
M.
,
Li
,
J.
,
Sun
,
J.
,
Ma
,
E.
, and
Suresh
,
S.
,
2013
, “
Real-Time, High-Resolution Study of Nanocrystallization and Fatigue Cracking in a Cyclically Strained Metallic Glass
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
49
), pp.
19725
19730
.10.1073/pnas.1320235110
169.
Sha
,
Z. D.
,
Qu
,
S. X.
,
Liu
,
Z. S.
,
Wang
,
T. J.
, and
Gao
,
H.
,
2015
, “
Cyclic Deformation in Metallic Glasses
,”
Nano Lett.
,
15
(
10
), pp.
7010
7015
.10.1021/acs.nanolett.5b03045
170.
Sha
,
Z. D.
,
Wong
,
W. H.
,
Pei
,
Q. X.
,
Branicio
,
P. S.
,
Liu
,
Z. S.
,
Wang
,
T. J.
,
Guo
,
T. F.
, and
Gao
,
H. J.
,
2017
, “
Atomistic Origin of Size Effects in Fatigue Behavior of Metallic Glasses
,”
J. Mech. Phys. Solids
,
104
, pp.
84
95
.10.1016/j.jmps.2017.04.005
171.
Launey
,
M. E.
,
Busch
,
R.
, and
Kruzic
,
J. J.
,
2008
, “
Effects of Free Volume Changes and Residual Stresses on the Fatigue and Fracture Behavior of a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass
,”
Acta Mater.
,
56
(
3
), pp.
500
510
.10.1016/j.actamat.2007.10.007
You do not currently have access to this content.