In this paper, research on transverse vibrations of axially moving strings and their control is thoroughly reviewed. In the last few decades, there have been extensive studies on analysis and control of transverse vibrations of axially moving strings because of the wide applications of many engineering devices that axially moving strings represent. In the investigations adopting linear models of moving strings, the paper summarizes recent studies on modal analysis, complicatedly constrained strings, coupled vibrations, and parametric vibration, as well as some early results. In the investigations adopting nonlinear models of moving strings, the paper presents the governing equations with large amplitude, and reviews progress on discretized or direct approximate analytical analyses and numerical approaches based on the Galerkin method or the finite difference method. Furthermore, investigations are reported on modeling of damping mechanisms as viscoelastic materials, coupled vibration of power transmission systems, and bifurcation and chaos. The state of the art of active control of moving strings is surveyed on controllability and observability, the Laplace transform domain analysis and the energy analysis, nonlinear vibration control and adaptive vibration control. Finally, future research directions are suggested such as nonlinear vibration of moving strings under complex constraints and couplings, energetics of nonlinear and time-varying strings, bifurcation and chaos in transverse motion of moving strings, control of hybrid systems containing moving strings, robust and adaptive controls of nonlinear moving strings, and experimental investigations. In this review article there are 242 references cited.

1.
Skutch
,
R.
,
1897
, “
Uber die Bewegung eines gespannten Fadens, welcher gezwungun ist, durch zwei feste Punkte mit einer constanten Geschwindigkeit zu gehen, und zwischen denselben in transversalen Schwingungen von gerlinger Amplitude versetzt wird
,”
Annalen der Physik und Chemie
,
61
, pp.
190
195
.
2.
Aiken
,
J.
,
1878
, “
An Account of Some Experiments on Rigidity Produced by Centrifugal Force
,”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
,
5
(
29
), pp.
81
105
.
3.
Mote
, Jr.,
C. D.
,
1972
, “
Dynamic Stability of Axially Moving Materials
,”
Shock Vib. Dig.
,
4
(
4
), pp.
2
11
.
4.
Ulsoy
,
A. G.
,
Mote
, Jr.,
C. D.
, and
Szymani
,
R.
,
1978
, “
Principal Developments in Band Saw Vibration and Stability Research
,”
Holz Roh-Werkst.
,
36
, pp.
273
280
.
5.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1988a
, “
Current Research on the Vibration and Stability of Axially-Moving Materials
,”
Shock Vib. Dig.
,
20
(
5
), pp.
3
13
.
6.
Wang
,
K. W.
, and
Liu
,
S. P.
,
1991
, “
On the Noise and Vibration of Chain Drive Systems
,”
Shock Vib. Dig.
,
23
(
4
), pp.
8
13
.
7.
Abrate
,
A. S.
,
1992
, “
Vibration of Belts and Belt Drives
,”
Mech. Mach. Theory
,
27
(
6
), pp.
645
659
.
8.
Swope
,
R. D.
, and
Ames
,
W. F.
,
1963
, “
Vibrations of a Moving Threadline
,”
J. Franklin Inst.
,
275
(
1
), pp.
36
55
.
9.
Archibald
,
F. R.
, and
Emslie
,
A. G.
,
1958
, “
The Vibration of a String Having a Uniform Motion Along Its Length
,”
J. Appl. Mech.
,
25
(
3
), pp.
347
348
.
10.
Pakdemirli
,
M.
, and
Boyaci
,
H.
,
2002
, “
Effect of Nonideal Boundary Conditions on the Vibrations of Continuous Systems
,”
J. Sound Vib.
,
249
(
4
), pp.
815
823
.
11.
Sack
,
R. A.
,
1954
, “
Transverse Oscillations in Travelling Strings
,”
Br. J. Appl. Phys.
,
5
, pp.
224
226
.
12.
Mahalingam
,
S.
,
1957
, “
Transverse Vibrations of Power Transmission Chains
,”
Br. J. Appl. Phys.
,
8
, pp.
145
148
.
13.
Chubachi
,
T.
,
1958
, “
Lateral Vibration of Axially Moving Wire or Belt Materials
,”
Bull. JSME
,
1
(
1
), pp.
24
29
.
14.
Miranker
,
W. L.
,
1960
, “
The Wave Equation in a Medium in Motion
,”
IBM J. Res. Dev.
,
4
(
1
), pp.
36
42
.
15.
Meirovitch, L., 1967, Analytical Methods in Vibrations, MacMillan, New York.
16.
Meirovitch, L., 1997, Principles and Techniques of Vibrations, Prentice–Hall, New Jersey.
17.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
,
12
, pp.
1337
1342
.
18.
Meirovitch
,
L.
,
1975
, “
A Model Analysis for the Response of Linear Gyroscopic Systems
,”
J. Appl. Mech.
,
42
(
2
), pp.
446
450
.
19.
D’Eleuterio
,
G. M.
, and
Hughes
,
P. C.
,
1984
, “
Dynamics of Gyroelastic Continua
,”
J. Appl. Mech.
,
51
(
2
), pp.
415
422
.
20.
Hughes
,
P. C.
, and
D’Eleuterio
,
G. M. T.
,
1986
, “
Modal Parameter Analysis of Gyroelastic Continua
,”
J. Appl. Mech.
,
53
, pp.
918
924
.
21.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
J. Appl. Mech.
,
57
(
3
), pp.
738
744
.
22.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1991
, “
Response and Discretization Method for Axially Moving Materials
,”
Appl. Mech. Rev.
,
44
(
11
), pp.
279
284
.
23.
Jha
,
R. K.
, and
Parker
,
R. G.
,
2000
, “
Spatial Discretization of Axially Moving Media Vibration Problems
,”
J. Vibr. Acoust.
,
122
, pp.
290
294
.
24.
Renshaw
,
A. A.
, and
Mote
, Jr.,
C. D.
,
1996
, “
Local Stability of Gyroscopic Systems Near Vanishing Eigenvalues
,”
J. Appl. Mech.
,
63
(
1
), pp.
116
120
.
25.
Kao, I., Wei, S., and Chiang, F. P., 1998, “Vibration Analysis of Wiresaw Manufacturing Processes and Wafer Surface Measurements,” NSF Des Manuf Grantees Conf, pp. 427–429.
26.
Wei
,
S.
, and
Kao
,
I.
,
2000
, “
Vibration Analysis of Wire and Frequency Response in the Modern Wiresaw Manufacturing Process
,”
J. Sound Vib.
,
231
(
5
), pp.
1383
1395
.
27.
Tan
,
C. A.
, and
Chung
,
C. H.
,
1993
, “
Transfer Function Formulation of Constrained Distributed Parameter Systems, Part 1: Theory
,”
J. Appl. Mech.
,
60
(
4
), pp.
1004
1011
.
28.
Chung
,
C. H.
, and
Tan
,
C. A.
,
1993
, “
Transfer Function Formulation of Constrained Distributed Parameter Systems, Part 2: Applications
,”
J. Appl. Mech.
,
60
(
4
), pp.
1012
1019
.
29.
Perkins
,
N. C.
,
1990
, “
Linear Dynamics of a Translating String on an Elastic Foundation
,”
J. Vibr. Acoust.
,
112
(
1
), pp.
2
7
.
30.
Wickert
,
J. A.
,
1994
, “
Response Solutions for the Vibration of a Traveling String on an Elastic Foundation
,”
J. Vibr. Acoust.
,
116
(
1
), pp.
137
139
.
31.
Xiong
,
Y.
, and
Hutton
,
S. G.
,
1994
, “
Vibration and Stability Analysis of a Multi-Guided Rotating String
,”
J. Sound Vib.
,
169
(
5
), pp.
669
683
.
32.
Tan
,
C. A.
, and
Zhang
,
L.
,
1994
, “
Dynamic Characteristics of a Constrained String Translating Across an Elastic Foundation
,”
J. Vibr. Acoust.
,
116
, pp.
318
325
.
33.
Yang
,
B.
, and
Tan
,
C. A.
,
1992
, “
Transfer Functions of One-Dimensional Distributed Parameter Systems
,”
J. Appl. Mech.
,
59
(
4
), pp.
1009
1014
.
34.
Parker
,
P. G.
,
1998
, “
On the Eigenvalues and Critical Speed Stability of Gyroscopic Continua
,”
J. Appl. Mech.
,
65
, pp.
134
140
.
35.
Saeed
,
H. M.
, and
Festroni
,
F.
,
1998
, “
Simulation of Combined System by Periodic Structures: The Wave Transfer Matrix Approach
,”
J. Sound Vib.
,
213
(
1
), pp.
53
73
.
36.
Riedel
,
C. H.
, and
Tan
,
C. A.
,
1998
, “
Dynamic Characteristics and Mode Localization of Elastically Constrained Axially Moving Strings and Beams
,”
J. Sound Vib.
,
215
(
3
), pp.
455
473
.
37.
Parker
,
P. G.
,
1999
, “
Supercritical Speed Stability of the Trivial Equilibrium of an Axially-Moving String on an Elastic Foundation
,”
J. Sound Vib.
,
221
(
2
), pp.
205
219
.
38.
Cheng
,
S. P.
, and
Perkins
,
N. C.
,
1991
, “
The Vibration and Stability of a Friction-Guided Translating String
,”
J. Sound Vib.
,
144
(
2
), pp.
281
292
.
39.
Huang
,
F. Y.
, and
Mote
, Jr.,
C. D.
,
1995
, “
On the Translating Damping Caused by a Thin Viscous Fluid Layer Between a Translating String and Translating Rigid Surface
,”
J. Sound Vib.
,
181
(
2
), pp.
251
260
.
40.
Chen
,
J. S.
,
1997
, “
Natural Frequencies and Stability of an Axially Traveling String in Contact With a Stationary Load System
,”
J. Vibr. Acoust.
,
119
(
2
), pp.
152
157
.
41.
Tan
,
C. A.
, and
Ying
,
S.
,
1997
, “
Dynamic Analysis of the Axially Moving String Based on Wave Propagation
,”
J. Appl. Mech.
,
64
, pp.
394
400
.
42.
Saeed
,
H. M.
,
1999
, “
Disturbance Propagation Paths in a Constrained Axially Moving String
,”
J. Sound Vib.
,
228
(
1
), pp.
218
225
.
43.
Le-Ngoc
,
L.
, and
McCallion
,
H.
,
1999
, “
Dynamic Stiffness of an Axially Moving String
,”
J. Sound Vib.
,
220
(
4
), pp.
749
756
.
44.
Rayleigh, J. W. S., 1945, The Theory of Sound, Dover, New York, Vol. 1.
45.
Yang
,
B.
,
1992
, “
Eigenvalue Inclusion Principles for Distributed Gyroscopic Systems
,”
J. Appl. Mech.
,
59
(
3
), pp.
650
656
.
46.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1988b
, “
Linear Transverse Vibration of an Axially Moving String-Particle System
,”
J. Acoust. Soc. Am.
,
84
(
3
), pp.
963
969
.
47.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1991a
, “
Traveling Load Response of an Axially Moving String
,”
J. Sound Vib.
,
149
(
2
), pp.
267
284
.
48.
Lee
,
K. Y.
, and
Renshaw
,
A. A.
,
2000
, “
Solution of Moving Mass Problem Using Complex Eigenfunction Expansions
,”
J. Appl. Mech.
,
67
(
6
), pp.
823
827
.
49.
Renshaw
,
A. A.
,
1997
, “
Modal Decoupling of Systems Described by Three Linear Operators
,”
J. Appl. Mech.
,
64
(
2
), pp.
238
240
.
50.
Zhu
,
W. D.
, and
Mote
, Jr.,
C. D.
,
1994
, “
Free and Forced Response of an Axially Moving String Transporting a Damped Linear Oscillator
,”
J. Sound Vib.
,
177
(
5
), pp.
591
610
.
51.
Zhu, W. D., and Mote, C. D., Jr., 1998, “On the Transient Response of Distributed Structures Interacting With Discrete Components,” in Dynamics and Control of Distributed Systems, edited by H. S. Tzou and L. A. Bergman, Cambridge University Press, Cambridge, pp. 1–68.
52.
Tan
,
C. A.
,
Yang
,
B.
, and
Mote
, Jr.,
C. D.
,
1990
, “
On the Vibration of a Translating String Coupled to Hydrodynamic Bearings
,”
J. Vibr. Acoust.
,
112
(
3
), pp.
337
345
.
53.
Mote
, Jr.,
C. D.
,
1965
, “
A Study of Band Saw Vibration
,”
J. Franklin Inst.
,
279
(
6
), pp.
430
444
.
54.
Hwang
,
S. J.
,
Perkins
,
N. C.
,
Ulsoy
,
A. G.
, and
Mechstroth
,
R. J.
,
1994
, “
Rotational Response and Slip Prediction of Serpentine Belt Drive Systems
,”
J. Vibr. Acoust.
,
116
(
1
), pp.
71
78
.
55.
Kraver
,
T. C.
,
Fan
,
G. W.
, and
Shah
,
J. J.
,
1996
, “
Complex Model Analysis of a Flat Belt Pulley System With Belt Damping and Coulomb-Damped Tensioner
,”
J. Mech. Des.
,
118
(
2
), pp.
306
311
.
56.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996a
, “
Free Vibration of Serpentine Belt Drive Systems
,”
J. Vibr. Acoust.
,
118
(
3
), pp.
406
413
.
57.
Zhang
L.
, and
Zu
J. W.
,
1999
, “
Modal Analysis of Serpentine Belt Drive Systems
,”
J. Sound Vib.
,
222
, pp.
259
279
.
58.
Zu, J. W., and Zhang, L., 2000, “Modal Analysis in Coupled Vibration of Serpentine Belt Drive System,” in Dyn Acoust Simulations, ASME DE Vol. 108 and DSC Vol. 68, pp. 177–183.
59.
Zhang
,
L.
,
Zu
,
J. W.
, and
Hou
,
Z.
,
2001
, “
Complex Modal Analysis of Non-Self-Adjoint Hybrid Serpentine Belt Drive Systems
,”
J. Vibr. Acoust.
,
123
, pp.
150
156
.
60.
Zhu
,
W. D.
, and
Mote
, Jr.,
C. D.
,
1995
, “
Propagation of Boundary Disturbances in an Axially Moving Strip in Contact With Rigid and Flexible Constraints
,”
J. Appl. Mech.
,
62
(
4
), pp.
873
879
.
61.
Zhu
,
W. D.
,
Mote
, Jr.,
C. D.
, and
Guo
,
B. Z.
,
1997
, “
Asymptotic Distribution of Eigenvalues of a Constrained Translating String
,”
J. Appl. Mech.
,
64
(
3
), pp.
613
619
.
62.
Lakshmikumaran
,
A. V.
, and
Wickert
,
J. A.
,
1996
, “
On the Vibrating of Coupled Traveling String and Air Bearing Systems
,”
J. Vibr. Acoust.
,
118
(
3
), pp.
398
405
.
63.
Roos
,
J. P.
,
Schweigman
,
C.
, and
Timman
,
R.
,
1973
, “
Mathematical Formulation of the Laws of Conservation of Mass and Energy and the Equation of Motion for a Moving Thread
,”
J. Eng. Math.
,
7
(
2
), pp.
139
146
.
64.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1989
, “
On the Energetics of Axially Moving Continua
,”
J. Acoust. Soc. Am.
,
85
(
3
), pp.
1365
1368
.
65.
Renshaw
,
A. A.
,
1997b
, “
The Energetics of Winched Strings
,”
J. Vibr. Acoust.
,
119
(
4
), pp.
643
644
.
66.
Lee
,
S. Y.
, and
Mote
, Jr.,
C. D.
,
1997
, “
A Generalized Treatment of the Energetics of Translating Continua, Part 1: Strings and Second Order Tensioned Pipes
,”
J. Sound Vib.
,
204
(
5
), pp.
717
734
.
67.
Lee
,
S. Y.
, and
Mote
, Jr.,
C. D.
,
1998
, “
Traveling Wave Dynamics in a Translating String Coupled to Stationary Constraints: Energy Transfer and Mode Localization
,”
J. Sound Vib.
,
212
(
1
), pp.
1
22
.
68.
Renshaw
,
A. A.
,
Rahn
,
C. D.
,
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1998
, “
Energy and Conserved Functionals for Axially Moving Materials
,”
J. Vibr. Acoust.
,
120
(
2
), pp.
634
636
.
69.
Mote
, Jr.,
C. D.
,
1966
, “
On the Nonlinear Oscillation of an Axially Moving String
,”
J. Appl. Mech.
,
33
, pp.
463
464
.
70.
Thurman
,
A. L.
, and
Mote
, Jr.,
C. D.
,
1969
, “
Free, Periodic, Nonlinear Oscillation of an Axially Moving Strip
,”
J. Appl. Mech.
,
36
(
1
), pp.
83
91
.
71.
Ames
,
W. F.
,
Lee
,
S. Y.
, and
Zaiser
,
J. N.
,
1968
, “
Nonlinear Vibration of a Traveling Threadline
,”
Int. J. Non-Linear Mech.
,
3
, pp.
449
469
.
72.
Lee
,
S. Y.
,
1969
, “
On the Equation of Motion of a Moving Threadline
,”
Dev. Mech.
,
5
(
3
), pp.
543
561
.
73.
Kim
,
Y. I.
, and
Tabarak
,
B.
,
1972
, “
On the Nonlinear Vibration of Travelling Strings
,”
J. Franklin Inst.
,
293
, pp.
381
399
.
74.
Koivurova
,
H.
, and
Salonen
,
E. M.
,
1999
, “
Comments on Nonlinear Formulations for Travelling String and Beam Problems
,”
J. Sound Vib.
,
225
(
5
), pp.
845
856
.
75.
Courant, R., and Hilbert, D., 1953, Methods of Mathematical Physics, Wiley, New York, Vol. 2.
76.
Ames
,
W. F.
, and
Vicario
, Jr.,
A. A.
,
1969
, “
On the Longitudinal Wave Propagation on a Traveling Threadline
,”
Dev. Mech.
,
5
(
3
), pp.
733
746
.
77.
Ames
,
W. F.
,
Lee
,
S. Y.
, and
Vicario
, Jr.,
A. A.
,
1970
, “
Longitudinal Wave Propagation on a Traveling Threadline II
,”
Int. J. Non-Linear Mech.
,
5
(
3
), pp.
413
426
.
78.
Lax
,
P. F.
,
1964
, “
Development of Singularities of Solutions of Homogeneous Nonlinear Hyperbolic Equations
,”
J. Math. Phys.
,
5
, pp.
611
613
.
79.
Jeferey
,
A.
,
1967
, “
The Evolution of Discontinuities in Solutions of Homogeneous Non-Linear Hyperbolic Equations Having Smooth Initial Data
,”
J. Math. Mech.
,
17
, pp.
331
333
.
80.
Bogoliuboy, N. N., and Mitropolsky, Y. A., 1961, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York.
81.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, Wiley, New York.
82.
Bapat
,
V. A.
, and
Srinivasan
,
P.
,
1967
, “
Nonlinear Transverse Oscillations on Travelling Strings by the Method of Harmonic Balance
,”
J. Appl. Mech.
,
34
, pp.
775
777
.
83.
Bapat
,
V. A.
, and
Srinivasan
,
P.
,
1971
, “
Nonlinear Transverse Oscillations on Traveling Strings by a Direct Linearization Method
,”
J. Indian Indust. Sci.
,
53
, pp.
120
125
.
84.
Mote
, Jr.,
C. D.
, and
Thurman
,
A. L.
,
1971
, “
Oscillation Modes of an Axially Moving Material
,”
J. Appl. Mech.
,
38
, pp.
279
280
.
85.
Ghangrekar
,
S. G.
,
1975
, “
On Nonlinear Oscillation of Moving String
,”
Labdev J. Sci. Tech: Phys. Sci. A
,
13
, pp.
255
257
.
86.
Korde
,
K. R.
,
1985
, “
On Nonlinear Oscillation of Moving String
,”
J. Appl. Mech.
,
52
, pp.
493
494
.
87.
Burton
,
T. D.
, and
Hamdan
,
M. N.
,
1983
, “
Analysis of Nonlinear Autonomous Conservative Oscillators by a Time Transformation Method
,”
J. Sound Vib.
,
87
(
4
), pp.
543
554
.
88.
Nayfeh
,
A. H.
,
Nayfeh
,
J. F.
, and
Mook
,
D. T.
,
1992
, “
On Methods for Continuous Systems With Quadratic and Cubic Nonlinearities
,”
Nonlinear Dyn.
,
3
(
1
), pp.
145
162
.
89.
Pakdemirli
,
M.
,
1994
, “
A Comparison of Two Perturbation Methods for Vibrations of Systems With Quadratic and Cubic Nonlinearities
,”
Mech. Res. Commun.
,
21
, pp.
203
208
.
90.
Pakdemirli
,
M.
, and
Boyaci
,
H.
,
1995
, “
Comparison of Direct-Perturbation Methods With Discretization-Perturbation Methods for Nonlinear Vibrations
,”
J. Sound Vib.
,
186
(
5
), pp.
837
845
.
91.
Pakdemirli
,
M.
,
Nayfeh
,
S. A.
, and
Nayfeh
,
A. H.
,
1995
, “
Analysis of One-to-One Autoparametric Resonances in Cables: Discretization vs Direct Treatment
,”
Nonlinear Dyn.
,
8
(
1
), pp.
65
83
.
92.
Nayfeh, A. H., Nayfeh, S. A., and Pakdemirli, M., 1995, “On the Discretization of Weakly Nonlinear Spatially Continuous Systems,” in Nonlinear Dynamic Stochastic Mechanism, edited by N. S. Namachchivaya and W. Kliemann, CRC Press, Boca Raton.
93.
Wickert
,
J. A.
,
1993
, “
Analysis of Self-Excited Longitudinal Vibration of a Moving Tape
,”
J. Sound Vib.
,
160
(
3
), pp.
455
463
.
94.
Majewski
,
T.
,
1986
, “
Audio Signal Modulation Caused by Self-Excited Vibrations of Magnetic Tape
,”
J. Sound Vib.
,
105
(
1
), pp.
17
25
.
95.
Jones, D. I., 2001, Handbook of Viscoelastic Vibration Damping, Wiley, New York.
96.
Zhang
,
L.
, and
Zu
,
J. W.
,
1998
, “
Nonlinear Vibrations of Viscoelastic Moving Belts, Part 1: Free Vibration Analysis
,”
J. Sound Vib.
,
216
(
1
), pp.
75
91
.
97.
Hou
,
Z.
, and
Zu
,
J. W.
,
2002
, “
Nonlinear Free Oscillations of Moving Belts With Standard Viscoelastic Model
,”
Mech. Mach. Theory
,
37
(
9
), pp.
925
940
.
98.
Christensen, R. M., 1982, Theory of Viscoelasticity, Academic, New York.
99.
Hou, Z., and Zu, J. W., 2001, “Nonlinear Free Oscillations of Viscoelastic Moving Belts Using Maxwell-Kelvin Model,” in Proceedings of the Asia-Pacific Vib Conference, Jilin Sci Tech Press, Changchun, pp. 39–43.
100.
Zu, J. W., and Hou, Z., 2000, “Comparison of Different Viscoelastic Models for Nonlinear Free Vibrations of Moving Belts,” in Vib. Cont. Continuous Syst. (ASME DE), Vol. 107, pp. 55–61.
101.
Moustafa
,
M. A.
, and
Salman
,
F. K.
,
1976
, “
Dynamic Properties of a Moving Thread Line
,”
J. Eng. Ind.
,
98
, pp.
868
875
.
102.
Chen, L. Q., Zhao, W. J., and Zu, J. W., 2005, “Simulations of Transverse Vibrations of an Axially Moving String: A Modified Difference Approach” Appl. Math. Comput. (accepted).
103.
Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1996, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia.
104.
Fung
,
R. F.
,
Wang
,
Y. C.
, and
Wu
J. W.
,
1999
, “
Group Properties and Group-Invariant Solutions for Infinitesimal Transformations of the Nonlinearly Traveling String
,”
Int. J. Non-Linear Mech.
,
34
, pp.
693
698
.
105.
Chen
,
L. Q.
, and
Zu
,
J. W.
,
2004
, “
Energetics and Conserved Functional of Moving Materials Undergoing Transverse Nonlinear Vibration
,”
J. Vib. Acoust.
126
(
3
), pp.
452
455
.
106.
Chen
,
L. Q.
, and
Zhao
,
W. J.
,
2005
, “
The Energetics and Stability of Axially Moving Kirchhoff Strings
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
55
58
.
107.
Shih
,
L. Y.
,
1971
, “
Three Dimensional Nonlinear Vibration of a Travelling String
,”
Int. J. Non-Linear Mech.
,
6
, pp.
427
434
.
108.
Shih
,
L. Y.
,
1975
, “
Motion of Elliptic Ballooning for a Travelling String
,”
Int. J. Non-Linear Mech.
,
10
(
3/4
), pp.
183
191
.
109.
Moon
,
J.
, and
Wickert
,
J. A.
,
1997
, “
Nonlinear Vibration of Power Transmission Belts
,”
J. Sound Vib.
,
200
(
4
), pp.
419
431
.
110.
Kirchhoff, G., 1877, Vorlesungen ueber Mathematische Physik: Mechanik, Druck und Verlag von B. G. Teubner, Leipzig.
111.
Zhang
,
L.
, and
Zu
,
J. W.
,
1999b
, “
Nonlinear Vibration of Parametrically Excited Moving Belts, Part 2: Stability Analysis
,”
J. Appl. Mech.
,
66
(
2
), pp.
403
409
.
112.
Chen
,
L. Q.
, and
Zhao
,
W. J.
,
2005
, “
A Numerical Method for Simulating Transverse Vibrations of Axially Moving Strings”
,
Appl. Math. Comput
,
160
(
2
), pp.
411
422
.
113.
Ariartnam
,
S. T.
, and
Asokanthan
,
S. F.
,
1987
, “
Dynamic Stability of Chain Drives
,”
ASME J. Mech., Transm., Autom. Des.
,
109
(
3
), pp.
412
418
.
114.
Mochensturm
,
E. M.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,”
J. Vibr. Acoust.
,
116
(
3
), pp.
346
351
.
115.
Mote
, Jr.,
C. D.
,
1968
, “
Parametric Excitation of an Axially Moving String
,”
J. Appl. Mech.
,
35
(
1
), pp.
171
172
.
116.
Naguleswaran
,
S.
, and
Williams
,
C. J. H.
,
1968
, “
Lateral Vibration of Band-Saw, Pulley Belts and the Like
,”
Int. J. Mech. Sci.
,
10
, pp.
239
250
.
117.
Liu
,
Z. S.
, and
Huang
,
C.
,
2002
, “
Evaluation of the Parametric Instability of an Axially Translating Media Using a Variational Principle
,”
J. Sound Vib.
,
257
(
5
), pp.
985
999
.
118.
Rhodes
,
J. E.
,
1970
, “
Parametric Self-Excitation of a Belt Into Transverse Vibration
,”
J. Appl. Mech.
,
37
(
4
), pp.
1055
1060
.
119.
Mote
, Jr.,
C. D.
,
1975
, “
Stability of Systems Transporting Accelerating Axially Moving Materials
,”
J. Dyn. Syst., Meas., Control
,
97
, pp.
96
98
.
120.
Pakdemirli
,
M.
, and
Batan
,
H.
,
1993
, “
Dynamic Stability of a Constantly Accelerating Strip
,”
J. Sound Vib.
,
168
(
2
), pp.
371
378
.
121.
Pakdemirli
,
M.
,
Ulsoy
,
A. G.
, and
Ceranoglu
,
A.
,
1994
, “
Transverse Vibration of an Axially Accelerating String
,”
J. Sound Vib.
,
169
(
2
), pp.
179
196
.
122.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
,
1997
, “
Stability Analysis of an Axially Accelerating String
,”
J. Sound Vib.
,
203
(
5
), pp.
815
832
.
123.
O¨z
,
H. R.
,
Pakdemirli
,
M.
, and
O¨zkaya
,
E.
,
1998
, “
Transition Behavior From String to Beam for an Axially Accelerating Material
,”
J. Sound Vib.
,
215
(
3
), pp.
571
576
.
124.
O¨zkaya
,
E.
, and
Pakdenirli
,
M.
,
2000
, “
Lie Group Theory and Analytical Solutions for the Axially Accelerating String Problem
,”
J. Sound Vib.
,
230
(
4
), pp.
729
742
.
125.
Suweken
,
G.
, and
Van Horssen
,
W. T.
,
2003
, “
On the Transversal Vibrations of a Conveyor Belt With a Low and Time-Varying Velocity. Part 1: The String-Like Case
,”
J. Sound Vib.
,
264
, pp.
117
133
.
126.
Wickert
,
J. A.
,
1996
, “
Transient Vibration of Gyroscopic Systems With Unsteady Superposed Motion
,”
J. Sound Vib.
,
195
(
5
), pp.
797
807
.
127.
Hsu
,
C. S.
,
1963
, “
On the Parametric Excitation of a Dynamic System Having Multiple Degrees of Freedom
,”
J. Appl. Mech.
,
30
, pp.
367
372
.
128.
Huang
,
J. S.
,
Fung
,
R. F.
, and
Lin
,
C. H.
,
1995
, “
Dynamic Stability of a Moving String Undergoing Three-Dimensional Vibration
,”
Int. J. Mech. Sci.
,
37
(
2
), pp.
145
160
.
129.
Fung
,
R. F.
, and
Wu
,
S. L.
,
1997
, “
Dynamic Stability of a Three-Dimensional String Subjected to Both Magnetic and Tensioned Excitations
,”
J. Sound Vib.
,
204
(
1
), pp.
171
179
.
130.
Fung
,
R. F.
,
Huang
,
J. S.
, and
Yeh
,
J. Y.
,
1998
, “
Nonlinear Dynamic Stability of a Moving String by Hamiltonian Formulation
,”
Comput. Struct.
,
66
(
5
), pp.
597
612
.
131.
Pellican, F., Vestroni, F., and Fregolent, A., 2000, “Experimental and Theoretical Analysis of a Power Transmission Belt,” in Vib. Cont. Continuous Syst. (ASME DE), Vol. 107, pp. 71–78.
132.
Nayfeh, A. H., 1993, Method of Normal Form, Wiley, New York.
133.
Zhang
,
L.
, and
Zu
,
J. W.
,
1999
, “
Nonlinear Vibration of Parametrically Excited Moving Belts, Part 1: Dynamic Response
,”
J. Appl. Mech.
,
66
(
2
), pp.
396
402
.
134.
Zhang
,
L.
, and
Zu
,
J. W.
,
1999
, “
Nonlinear Vibration of Parametrically Excited Moving Belts, Part 2: Stability Analysis
,”
J. Appl. Mech.
,
66
(
2
), pp.
403
409
.
135.
Hou, Z., and Zu, J. W., 2001, “Parametric Vibration of Viscoelastic Moving Belts Using Standard Linear Solid Model,” ASME 18th Bieannial Conf. Mech. Vib. Noise, September 9–12, 2001, Pittsburgh.
136.
Chen
,
L. Q.
, and
Zu
,
J. W.
,
2003
, “
Parametric Resonance of Axially Moving String with an Integral Constitutive Law
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
4
(
2
), pp.
169
177
.
137.
Chen
,
L. Q.
,
Zu
,
J. W.
, and
Wu
,
J.
,
2003
, “
Dynamic Response of the Parametrically Excited Axially Moving String Constituted by the Boltzmann Superposition Principle
,”
Acta Mech.
,
162
, pp.
143
155
.
138.
Fung
,
R. F.
,
Huang
,
J. S.
, and
Chen
,
Y. C.
,
1997
, “
The Transient Amplitude of the Viscoelastic Travelling String: An Integral Constitutive Law
,”
J. Sound Vib.
,
201
(
2
), pp.
153
167
.
139.
Wu
,
J.
, and
Chen
,
L. Q.
,
2004
, “
Steady-State Responses and Their Stability of Nonlinear Vibration of an Axially Accelerating String
,”
Appl. Math. Mech.
,
25
(
9
), pp.
1001
1011
.
140.
Chen
,
L. Q.
,
Zu
,
J. W.
, and
Wu
,
J.
,
2004
, “
Principal Resonance in Transverse Nonlinear Parametric Vibration of an Axially Accelerating Viscoelastic String
,”
Acta Mech. Sinica
),
20
(
3
), pp.
307
316
.
141.
Chen
,
L. Q.
,
Zu
,
J. W.
,
Wu
,
J.
, and
Yang
,
X. D.
,
2004
, “
Transverse Vibrations of an Axially Accelerating Viscoelastic String With Geometric Nonlinearity
,”
J. Eng. Math.
,
48
(
2
), pp.
171
182
.
142.
Chen, L. Q., 2005, “Principal Parametric Resonance of Axially Accelerating Viscoelastic Strings Constituted by the Boltzmann Superposition Principle,” Proc. Royal. Soc. London, (revised).
143.
Fung
,
R. F.
,
Huang
J. S.
,
Chen
,
Y. C.
, and
Yao
,
C,. M.
,
1998
, “
Nonlinear Dynamic Analysis of the Viscoelastic String With a Harmonically Varying Transport Speed
,”
Comput. Struct.
,
66
(
6
), pp.
777
784
.
144.
Zhang
,
L.
,
Zu
,
J. W.
, and
Zhong
,
Z.
,
2002
, “
Transient Response for Viscoelastic Moving Belts Using Block-by-Block Method
,”
International Journal of Structural and Dynamics
,
2
(
2
), pp.
265
280
.
145.
Lize, P., 1985, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia.
146.
Chen
,
L. Q.
,
Zhao
,
W. J.
, and
Zu
,
J. W.
,
2004
, “
Transient Responses of an Axially Accelerating Viscoelastic String Constituted by a Fractional Differentiation Law
J. Sound Vib.
,
278
(4.5), pp.
861
871
.
147.
Zhao, W. J., and Chen, L. Q., 2003, “Iterative Techniques for Simulating Transverse Vibration of Axially Moving Viscoelastic Strings With Integral Constitutive” (preprint).
148.
Chung
,
J.
,
Han
,
C. S.
, and
Yi
,
K.
,
2001
, “
Vibration of an Axially Moving String With Geometric Non-Linearity and Translating Acceleration
,”
J. Sound Vib.
,
240
(
4
), pp.
733
746
.
149.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
J. Appl. Mech.
,
60
, pp.
371
375
.
150.
Bhat
,
R. B.
,
Xistris
,
G. D.
, and
Sankar
,
T. S.
,
1982
, “
Dynamic Behavior of a Moving Belt Supported on an Elastic Foundation
,”
J. Mech. Des.
,
104
(
1
), pp.
143
147
.
151.
Zhao
,
W. J.
, and
Chen
,
L. Q.
,
2002
, “
A Numerical Algorithm for Non-Linear Parametric Vibration Analysis of a Viscoelastic Moving Belt
,”
International Journal of Nonlinear Science and Numerical Simulation
,
3
(
2
), pp.
139
144
.
152.
Chen
,
L. Q.
, and
Zhao
,
W. J.
,
2005
, “
A Computation Method for Nonlinear Vibration of Axially Accelerating Visoelastic Strings
,”
Appl. Math. Comput.
,
162
(
1
), pp.
305
310
.
153.
Argyris, J., Faust, G., and Haase, M., 1994, An Exploration of Chaos, North-Holland, Amsterdam.
154.
Nayfeh, A. H., and Balachandran, B., 1995, Applied Nonlinear Dynamics: Analytical, Computational, and Experiment Methods, Wiley, New York.
155.
Chen
,
L. Q.
,
Zhang
,
N. H.
, and
Zu
,
J. W.
,
2002
, “
Bifurcation and Chaos of an Axially Moving Viscoelastic String
,”
Mech. Res. Commun.
,
29
(
2/3
), pp.
81
90
.
156.
Chen
,
L. Q.
,
Zhang
,
N. H.
, and
Zu
,
J. W.
,
2003
, “
The Regular and Chaotic Vibrations of an Axially Moving Viscoelastic String Based on 4-Order Galerkin Truncation
,”
J. Sound Vib.
,
261
(
4
), pp.
764
773
.
157.
Chen
,
L. Q.
,
Wu
,
J.
, and
Zu
,
J. W.
,
2004
, “
Asymptotic Nonlinear Behaviors in Transverse Vibration of an Axially Accelerating Viscoelastic String
Nonlinear Dyn.
,
35
(
4
), pp.
659
666
.
158.
Chen
,
L. Q.
,
Wu
,
J.
, and
Zu
,
J. W.
,
2003b
, “
The Chaotic Response of the Viscoelastic Traveling String: an Integral Constitutive Law
Chaos, Solitons, Fractals
,
21
(
2
), pp.
349
357
.
159.
Chen, L. Q., and Zhang, N. H., 2004, “Nonlinear Dynamics of Axially Moving Viscoelastic Strings Based on Translating Eigenfunctions,” XXI INternational Congress of Theoretical and Applied Mechanics, 15-21 August, 2001, Warsaw, Poland.
160.
Leamy
,
M. J.
, and
Perkins
,
N. C.
,
1998
, “
Nonlinear Periodic Response of Engine Accessory Drives With Dry Friction Tensioners
,”
J. Vibr. Acoust.
,
118
(
4
), pp.
909
916
.
161.
Chen
,
L. Q.
, and
Wu
,
Z. M.
,
2003
, “
Amplitude-Frequency Characteristic of Nonlinear Vibration of a Serpentine Belt Drive System
,”
Eng. Mech.
,
20
(
1
), pp.
149
152
(in Chinese).
162.
Chen
,
L. Q.
, and
Wu
,
Z. M.
,
2002
, “
Averaging Method for Analyzing a Multi-Degree-of-Freedom Nonlinear Oscillation
,”
J. Vib. Shock
,
21
(
3
), pp.
63
64
(in Chinese).
163.
Zu, J. W., Jia, H. S., and Zhong, Z., 2002, “Dynamic Analysis of Automotive Serpentine Belt Drive Systems With Coulomb Friction” (preprint).
164.
Cheng
,
G.
, and
Zu
,
J. W.
,
2004
, “
Non-Stick and Stick-Slip Motion of a Coulomb-Damped Belt Drive Systems Subjected to Multi-Frequency Excitations
,”
J. Appl. Mech.
,
70
(
6
), pp.
871
884
.
165.
Ulsoy
,
A. G.
,
Whitesell
,
J. E.
, and
Hooven
,
M. D.
,
1985
, “
Design of Belt-Tensioner Systems for Dynamic Stability
,”
J. Vibr. Acoust.
,
107
, pp.
282
290
.
166.
Wang
,
K. W.
,
1992
, “
On the Stability of Chain Drive Systems Under Periodic Sprocket Oscillations
,”
J. Vibr. Acoust.
,
114
(
1
), pp.
119
126
.
167.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996b
, “
Nonlinear Coupled Response of Serpentine Belt Drive Systems
,”
J. Vibr. Acoust.
,
118
(
4
), pp.
567
574
.
168.
Zhang
,
L.
, and
Zu
,
J. W.
,
2000
, “
One-to-One Auto-Parametric Resonance in Serpentine Belt Drive Systems
,”
J. Sound Vib.
,
232
(
4
), pp.
783
806
.
169.
Zu
,
J. W.
, and
Zhang
,
L.
,
2000
, “
Two-to-One Internal Resonance in Serpentine Belt Drive Systems
,”
Int. J. Nonlinear Sci. Numer. Simulat.
,
1
(
3
), pp.
187
198
.
170.
Fung
,
R. F.
, and
Shieh
,
J. S.
,
1997
, “
Vibration Analysis of a Non-Linear Coupled Textile-Rotor System With Synchronous Whirling
,”
J. Sound Vib.
,
199
(
2
), pp.
207
221
.
171.
Fung
,
R. F.
, and
Cheng
,
W. H.
,
1993
, “
Free Vibration of a String/Slider Nonlinear Coupling System
,”
J. Chinese Soc. Mech. Eng.
,
12
, pp.
229
239
.
172.
Fung
,
R. F.
,
Lin
,
J. H.
, and
Yao
,
C. M.
,
1997
, “
Vibration Analysis and Suppression Control of an Elevator String Actuated by a PM Synchronous Servo Motor
,”
J. Sound Vib.
,
206
(
3
), pp.
399
423
.
173.
Fung
,
R. F.
,
Huang
,
J. S.
, and
Chu
,
J. J.
,
1998
, “
Dynamic Stability of an Axially Traveling String/Slider Coupling System With Moving Boundary
,”
J. Sound Vib.
,
211
(
4
), pp.
689
701
.
174.
Yao
,
C. M.
,
Fung
,
R. F.
, and
Tseng
,
C. R.
,
1999
, “
Nonlinear Vibration Analysis of a Traveling String With Time-Dependent Length by New Hybrid Laplace Transform/Finite Element Method
,”
J. Sound Vib.
,
219
(
2
), pp.
323
337
.
175.
Leung
,
A. Y. T.
,
2000
, “
Comment on ‘Non-Linear Vibration Analysis of a Traveling String With Time-Dependent Length by New Hybrid Laplace Transform/Finite Element Method,’
J. Sound Vib.
,
235
(
5
), pp.
877
878
.
176.
Fung
,
R. F.
, and
Chang
,
H. C.
,
2001
, “
Dynamic and Energetic Analyses of a String-Slider Non-Linear Coupling System by Variable Grid Finite Difference
,”
J. Sound Vib.
,
239
(
3
), pp.
505
514
.
177.
Zhu
,
W. D.
, and
Ni
,
J.
,
2000
, “
Energetics and Stability of Translating Media With an Arbitrarily Varying Length
,”
J. Vibr. Acoust.
,
122
, pp.
295
304
.
178.
Meirovitch, L., 1990, Dynamics and Control of Structures, Wiley, New York.
179.
Banks, S. P., 1983, State-Space and Frequency-Domain Methods in the Control of Distributed Parameter System, Peter Peregrinus, London.
180.
Hughes
,
P. C.
, and
Skelton
,
R. E.
,
1979
, “
Stability, Controllability and Observability of Linear Matrix-Second-Order Systems
,”
J. Appl. Mech.
,
47
(
2
), pp.
415
420
.
181.
Juang
,
J.
, and
Balas
,
M.
,
1978
, “
Dynamics and Control of Large Spinning Spacecraft
,”
J. Astronaut. Sci.
,
28
(
1
), pp.
31
48
.
182.
Yang
,
B.
, and
Mote
, Jr.,
C. D.
,
1991
, “
Controllability and Observability of Distributed Gyroscopic Systems
,”
J. Dyn. Syst., Meas., Control
,
113
(
1
), pp.
11
17
.
183.
Jai
,
A.
, and
Pritchard
,
A.
,
1987
, “
Sensors and Actuators in Distributed Systems
,”
Int. J. Control
,
46
(
4
), pp.
1139
1153
.
184.
Curtain, R. F., and Prichard, A. J., 1978, Infinite Dimensional Linear System Theory, Springer-Verlag, New York.
185.
Sunar
,
M.
, and
Rao
,
S. S.
,
1999
, “
Recent Advances in Sensing and Control of Flexible Structures via Piezoelectric Materials Technology
,”
Appl. Mech. Rev.
,
52
(
1
), pp.
1
16
.
186.
Kostyuk
,
V. I.
,
Krasnoproshina
,
A. A.
, and
Ilyukhin
,
A. G.
,
1983
, “
Vibration of a Longitudinally Moving String and Some Problem in Dynamics of Winding Sets
,”
Sov. Appl. Mech.
,
19
(
3
), pp.
261
267
.
187.
Ulsoy
,
A. G.
,
1984
, “
Vibration Control in Rotating or Translating Elastic Systems
,”
J. Dyn. Syst., Meas., Control
,
106
(
1
), pp.
6
14
.
188.
Butlovskiy, A. G., 1983, Structural Theory of Distributed Systems, Wiley, New York.
189.
Yang
,
B.
,
1992b
, “
Transfer Functions of Constrained/Combined One-Dimensional Continuous Dynamic Systems
,”
J. Sound Vib.
,
156
(
1
), pp.
425
433
.
190.
Yang
,
B.
, and
Mote
, Jr.,
C. D.
,
1991
, “
Active Vibration Control of the Axially Moving String in the S Domain
,”
J. Appl. Mech.
,
58
(
1
), pp.
189
196
.
191.
Yang
,
B.
, and
Mote
,Jr.,
C. D.
,
1991
, “
Frequency-Domain Vibration Control of Distributed Gyroscopic System
,”
J. Dyn. Syst., Meas., Control
,
113
(
1
), pp.
18
25
.
192.
Yang
,
B.
, and
Mote
, Jr.,
C. D.
,
1992
, “
On Time Delay in Noncollocated Control of Flexible Mechanical Systems
,”
J. Dyn. Syst., Meas., Control
,
114
(
3
), pp.
409
415
.
193.
Yang
,
B.
,
1992c
, “
Noncollocated Control of a Damped String Using Time Delay
,”
J. Dyn. Syst., Meas., Control
,
114
(
4
), pp.
736
740
.
194.
Vaughan
,
D. R.
,
1968
, “
Application of Distributed Parameter Concepts to Dynamic Analysis and Control of Bending Vibrations
,”
J. Basic Eng.
,
90
, pp.
157
166
.
195.
Flotow
,
Ahvon
,
1986
, “
Traveling Wave Control for Large Spacecraft Structures
,”
J. Guid. Control Dyn.
,
9
(
1
), pp.
6
14
.
196.
MacMartin
,
D. G.
, and
Hall
,
S. R.
,
1991
, “
Control of Uncertain Structures Using an H∞ Power Flow Approach
,”
J. Guid. Control Dyn.
,
14
(
3
), pp.
521
530
.
197.
Fujii
,
H.
,
Ohtsuka
,
T.
, and
Murayama
,
T.
,
1992
, “
Wave-Absorbing Control for Flexible Structures With Noncollocated Sensors and Actuators
,”
J. Guid. Control Dyn.
,
15
(
2
), pp.
431
439
.
198.
Chung
,
C. H.
, and
Tan
,
C. A.
,
1995
, “
Active Vibration Control of the Axially Moving String by Wave Cancellation
,”
J. Vibr. Acoust.
,
117
(
1
), pp.
49
55
.
199.
Ying
,
S.
, and
Tan
,
C. A.
,
1996
, “
Active Vibration Control of the Axially Moving String Using Space Feedforward and Feedback Controllers
,”
J. Vibr. Acoust.
,
118
(
3
), pp.
306
312
.
200.
Tan
,
C. A.
, and
Ying
,
S.
,
2000
, “
Active Wave Control of the Axially Moving String: Theory and Experiment
,”
J. Sound Vib.
,
236
(
5
), pp.
861
880
.
201.
Lee
,
S. Y.
, and
Mote
, Jr.,
C. D.
,
1996
, “
Vibration Control of an Axially Moving String by Boundary Control
,”
J. Dyn. Syst., Meas., Control
,
118
(
1
), pp.
66
74
.
202.
Fung
,
R. F.
,
Wu
,
J. W.
, and
Wu
,
S. L.
,
1999a
, “
Exponential Stabilization of an Axially Moving String by Linear Boundary Feedback
,”
Automatica
,
35
, pp.
177
181
.
203.
Huang
,
J. S.
,
Wu
,
J. W.
, and
Lu
,
P. Y.
,
2002
, “
A Study of Moving String With Partial State Feedback
,”
Int. J. Mech. Sci.
,
44
(
9
), pp.
1893
1905
.
204.
Zhu
,
W. D.
,
Ni
,
J.
, and
Huang
,
J.
,
2001
, “
Active Control of Translating Media With Arbitrarily Varying Length
,”
J. Vibr. Acoust.
,
123
, pp.
347
358
.
205.
Zhang, F., Nagarkatti, S. P., Costic, B. T., Dawson, D. M., and Rahn, C. D., 1999, “Velocity Tracking Control of an Axially Accelerating String and Actuator System,” in Proceedings of the 38th Conf Decision Cont (IEEE), Vol. 5, pp. 4325–4330.
206.
Nagarkatti
S. P.
,
Zhang
F.
,
Rahn
C. D.
, and
Dawson
D. M.
,
2000
, “
Tension and Speed Regulation for Axially Moving Materials
,”
J. Dyn. Syst., Meas., Control
,
122
, pp.
445
453
.
207.
Slotine, J. J. E., and Li, W., 1991, Applied Nonlinear Control, Prentice–Hall, NJ.
208.
Itkis, Y., 1976, Control System of Variable Structure, Wiley, New York.
209.
Utkin, V. I., 1992, Sliding Modes in Control and Optimization, Springer-Verlag, New York.
210.
Huang
,
J. S.
,
Fung
,
F. R.
, and
Chen
,
D. S.
,
1994
, “
Application on Variable Structure Control in the Gyroscopic String Vibration
,”
Trans. Aeronaut Soc. Rep., China
,
26
(
4
), pp.
329
338
.
211.
Fung
,
R. F.
, and
Liao
,
C. C.
,
1995
, “
Application if Variable Structure Control in the Nonlinear String System
,”
Int. J. Mech. Sci.
,
37
(
9
), pp.
985
993
.
212.
Meirovitch
,
L.
, and
O¨z
,
H.
,
1980
, “
Modal-Space Control of Distributed Gyroscopic Systems
,”
J. Guid. Control
,
3
(
2
), pp.
140
150
.
213.
O¨z
,
H.
, and
Meirovitch
,
L.
,
1980
, “
Optimal Modal-Space Control of Flexible Gyroscopic System
,”
J. Guid. Control Dyn.
,
3
, pp.
218
226
.
214.
Meirocitch
,
L.
, and
Baruh
,
H.
,
1983
, “
On the Problem of Observation Spillover in Self-Adjoint Distributed Parameter Systems
,”
J. Optim. Theory Appl.
,
39
, pp.
269
275
.
215.
Fung
,
R. F.
,
Huang
,
J. S.
,
Wang
,
Y. C.
, and
Yang
,
R. T.
,
1998
, “
Vibration Reduction of the Nonlinearly Traveling String by a Modified Variable Structure Control With Proportional and Integral Compensations
,”
Int. J. Mech. Sci.
,
40
(
6
), pp.
493
506
.
216.
Chern
,
T. L.
, and
Wu
,
Y. C.
,
1991
, “
Design of Integral Variable Structure Controller and Application to Electrohydraulic Velocity Servosystems
,”
IIE Trans.
,
138
(
5
), pp.
439
444
.
217.
Orlov
Yu. V.
, and
Utkin
V. I.
,
1987
, “
Sliding Mode Control in Indefinite-Dimensional Systems
,”
Automatica
,
23
(
6
), pp.
753
757
.
218.
Fung
R. F.
, and
Tseng
C. C.
,
1999
, “
Boundary Control of an Axially Moving String via Lyapunov Method
,”
J. Dyn. Syst., Meas., Control
,
121
(
1
), pp.
105
110
.
219.
Queiroz, M. A., Dawson, D. M., Nagarkatti, S. P., and Zhang, F., 2000, Lyapunov-Based Control of Mechanical Systems, Birkhauser, Boston.
220.
Shahruz
,
S. M.
, and
Kurmaji
,
D. A.
,
1997
, “
Vibration Suppression of a Non-Linear Axially Moving String by Boundary Control
,”
J. Sound Vib.
,
201
(
1
), pp.
145
152
.
221.
Shahruz
,
S. M.
,
2000
, “
Boundary Control of a Nonlinear Axially Moving String
,”
Int. J. Robust Nonlinear Control
,
10
(
1
), pp.
7
25
.
222.
Komornik, V., 1994, Exact Controllability and Stabilization: The Energy Multiplier Method, Wiley, New York.
223.
Luo, A. H., Guo, B. Z., and Morgul, O., 1999, Stability and Stabilization of Infinite Dimensional Systems With Applications, Stringer-Verlag, New York.
224.
Shahruz
,
S. M.
,
1998
, “
Boundary Control of the Axially Moving Kirchhoff String
,”
Automatica
,
34
(
10
), pp.
1273
1277
.
225.
Shahruz
,
S. M.
, and
Parasurama
,
S. A.
,
1998
, “
Suppression of Vibration in the Axially Moving Kirchhoff String by Boundary Control
,”
J. Sound Vib.
,
214
(
3
), pp.
567
575
.
226.
Fung
,
R. F.
,
Wu
,
J. W.
, and
Wu
,
S. L.
,
1999b
, “
Stabilization of an Axially Moving String by Nonlinear Boundary Feedback
,”
J. Dyn. Syst., Meas., Control
,
121
(
1
), pp.
117
121
.
227.
A˚stro¨m, K. J., and Wittenmark, B., 1995, Adaptive Control, Addison-Wesley, New York.
228.
Krstic, M., Kanellakopoulos, I. K., and Kokotovic, P., 1995, Nonlinear and Adaptive Control Design, CRC Press, FL.
229.
Queiroz
,
M. S.
,
Dawson
,
D. M.
,
Rahn
,
C. D.
, and
Zhang
,
F.
,
1999
, “
Adaptive Vibration Control of an Axially Moving String
,”
J. Vibr. Acoust.
,
121
(
1
), pp.
41
49
.
230.
Fung
,
R. F.
,
Wu
,
J. W.
, and
Lu
,
P. Y.
,
2002
, “
Adaptive Boundary Control of an Axially Moving String System
,”
J. Vibr. Acoust.
,
124
, pp.
435
440
.
231.
Middleton
,
R. H.
, and
Goodwin
,
G. C.
,
1988
, “
Adaptive Computed Torque Control for Rigid Link Manipulator
,”
Syst. Control Lett.
,
10
(
1
), pp.
9
16
.
232.
Spong
,
M. W.
, and
Ortega
,
R.
,
1990
, “
On Adaptive Inverse Dynamics Control of Rigid Robots
,”
IEEE Trans. Autom. Control
,
35
(
1
), pp.
31
36
.
233.
Lammerts
,
I. M. M.
,
Veldpaus
,
F. E.
,
Molengraft Vande
,
M. J. G.
, and
Kok
,
J. J.
,
1995
, “
Adaptive Reference Computed Torque Control of Flexible Robots
,”
J. Dyn. Syst., Meas., Control
,
117
(
1
), pp.
31
36
.
234.
Li
,
Y.
,
Aron
,
D.
, and
Rahn
,
C. D.
,
2002
, “
Adaptive Vibration Isolation for Axially Moving Strings: Theory and Experiment
,”
Automatica
,
38
, pp.
379
390
.
235.
Huang
,
J. S.
,
Chao
,
P. C. P.
,
Fung
,
R. F.
, and
Lai
,
C. L.
,
2003
, “
Parametric Control of an Axially Moving String via Fuzzy Sliding-Mode and Fuzzy Neural Network Methods
,”
J. Sound Vib.
,
264
, pp.
177
201
.
236.
Rahn
,
C. D.
, and
Mote
, Jr.,
C. D.
,
1994
, “
Parametric Control of Flexible Systems
,”
J. Vibr. Acoust.
,
116
, pp.
379
385
.
237.
Rahn
,
C. D.
, and
Mote
, Jr.,
C. D.
,
1996
, “
Parametric Control of Nonconservative Mechanical Systems
,”
J. Dyn. Syst., Meas., Control
,
118
, pp.
309
314
.
238.
Rahn
,
C. D.
, and
Mote
, Jr.,
C. D.
,
1996
, “
Axial Force Stabilization of Transverse Vibration in Pinned and Clamped Beams
,”
J. Dyn. Syst., Meas., Control
,
118
, pp.
379
380
.
239.
Chao
,
P. C. P.
, and
Lai
,
C. L.
,
2003
, “
Boundary Control of an Axially Moving String via Fuzzy Sliding-Mode Control and Fuzzy Neural Network Methods
,”
J. Sound Vib.
,
262
, pp.
795
813
.
240.
Rim
,
W. T.
, and
Kim
,
K. J.
,
1994
, “
Identification of Tension in a Belt-Driven System by Analyzing Flexural Vibrations
,”
Mech. Syst. Signal Process.
,
8
(
2
), pp.
199
213
.
241.
Qu
,
Z.
,
2001
, “
Robust and Adaptive Boundary Control of a Stretched String on a Moving Transporter
,”
IEEE Trans. Autom. Control
,
46
(
3
), pp.
470
476
.
242.
Qu
,
Z.
,
2002
, “
An Iterative Learning Algorithm for Boundary Control of a Stretched Moving String
,”
Automatica
,
38
, pp.
821
827
.
You do not currently have access to this content.