The system of equations, material constitutive laws, and boundary conditions required to construct an anatomically and biophysically based model of ventricular mechanics is reviewed. The models use high-order field descriptions to represent the geometry and embedded microstructural information relevant to whole organ function. Constitutive laws are presented which characterize the nonlinear passive elasticity of cardiac tissue and model the active development of tension produced by myocyte contraction. Finally, the integration of metabolic energetics with organ-scale mechanical simulations is discussed and future research directions are proposed.

1.
Opie, L. H., 1998, The Heart: Physiology, from Cell to Circulation, New York, third, edition, Lippincott-Raven.
2.
Nielsen
P. M. F.
,
Le Grice
I. J.
,
Smaill
B. H.
, and
Hunter
P. J.
,
1991
, “
Mathematical Model of Geometry and Fibrous Structure of the Heart
,”
Am. J. Physiol.
,
260
(
29
), pp.
H1365–H1378
H1365–H1378
.
3.
Stevens C., Remme E., LeGrice I. J., and Hunter P. J., 2002, “Ventricular Mechanics in Disatole: Material Parameter Sensitivity,” J. Biomech., pp. 737–748.
4.
Le Grice
I. J.
,
Smaill
B. H.
,
Chai
L. Z.
,
Edgar
S. G.
,
Gavin
J. B.
, and
Hunter
P. J.
,
1995
, “
Laminar Structure of the Heart: Ventricular Myocyte Arrangement and Connective Tissue Architecture in the Dog
,”
Am. J. Physiol.
,
269
(
38
), pp.
H571–H582
H571–H582
.
5.
Beyar
R.
, and
Sideman
S.
,
1984
, “
A Computer Study of the Left Ventricular Performance Based on Fiber Structure, Sarcomere Dynamics, and Transmural Electrical Propagation Velocity
,”
Circ. Res.
,
55
(
3
), pp.
358
375
.
6.
Bovendeerd
P. H. M.
,
Arts
T.
,
Huyghe
J. M.
,
van Campen
D. H.
, and
Reneman
R. S.
,
1992
, “
Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: A Model Study
,”
J. Biomech.
,
25
(
10
), pp.
1129
1140
.
7.
Bovendeerd
P. H. M.
,
Huyghe
J. M.
,
Arts
T.
,
van Campen
D. H.
, and
Reneman
R. S.
,
1994
, “
Influence of Endocardial-Epicardial Crossover of Muscle Fibers on Left Ventricular Wall Mechanics
,”
J. Biomech.
,
27
(
7
), pp.
941
951
.
8.
Guccione, J. M., and McCulloch, A. D., 1991, “Finite Element Modeling of Ventricular Mechanics,” edited by L. Glass, P. J. Hunter, and A. D. McCulloch, Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function, Springer, New York, pp. 121–124.
9.
Arts
T.
,
Veenstra
P. C.
, and
Reneman
R. S.
,
1982
, “
Epicardial Deformation and Left Ventricular Wall Mechanics During Ejection in the Dog
,”
Am. J. Physiol.
,
243
(
12
), pp.
H379–H390
H379–H390
.
10.
Rijcken
J.
,
Bovendeerd
P. H.
,
Schoofs
A. J.
,
van Campen
D. H.
, and
Arts
T.
,
1997
, “
Optimization of Cardiac Fiber Orientation for Homogeneous Fiber Strain at Beginning of Ejection
,”
J. Biomech.
,
30
(
10
), pp.
1041
1049
.
11.
Vendelin
M.
,
Bovendeerd
P. H.
,
Engelbrecht
J.
, and
Arts
T.
,
2002
, “
Optimizing Ventricular Fibers: Uniform Strain or Stress, but Not ATP Consumption, Leads to High Efficiency
,”
Am. J. Physiol.
,
283
(
3
), pp.
H1072–H1081
H1072–H1081
.
12.
Vetter
F. J.
, and
McCulloch
A. D.
,
2000
, “
Three-Dimensional Stress and Strain in Passive Rabbit Left Ventricle: A Model Study
,”
Ann. Biomed. Eng.
,
28
(
7
), pp.
781
792
.
13.
Nash
M. P.
, and
Hunter
P. J.
,
2000
, “
Compuatational Mechanics of the Heart
,”
J. Elast.
,
61
, pp.
112
141
.
14.
Omens
J. H.
,
May
K. D.
, and
McCulloch
A. D.
,
1991
, “
Transmural Distribution of Three-Dimensional Strain in the Isolated Arrested Canine Left Ventricle
,”
Am. J. Physiol.
,
261
(
30
), pp.
H918–H928
H918–H928
.
15.
Waldman
L. K.
,
Fung
Y. C.
, and
Covell
J. W.
,
1985
, “
Transmural Myocardial Deformation in the Canine Left Ventricle: Normal In Vivo Three-Dimensional Finite Strains
,”
Circ. Res.
,
57
(
1
), pp.
152
163
.
16.
Waldman
L. K.
,
Nossan
D.
,
Villareal
F.
, and
Covell
J. W.
,
1988
, “
Relation Between Transmural Deformation and Local Myofiber Direction in the Canine Left Ventricle
,”
Circ. Res.
,
63
, pp.
550
562
.
17.
Huyghe
J. M.
,
van Campen
D. H.
,
Arts
T.
, and
Heethaar
R. M.
,
1991
, “
A Two-Phase Finite Element Model of the Diastolic Left Ventricle
,”
J. Biomech.
,
24
(
7
), pp.
527
538
.
18.
Yang
M.
, and
Taber
L. A.
,
1991
, “
The Possible Role of Poroelasticity in the Apparent Viscoelastic Behavior of Passive Cardiac Muscle
,”
J. Biomech.
,
24
(
7
), pp.
587
597
.
19.
Smaill, B. H., and Hunter, P. J., 1991, “Structure and Function of the Diastolic Heart: Material Properties of Passive Myocardium,” edited by L. Glass, P. J. Hunter, and A. D. McCulloch, Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function, Springer, New York, pp. 1–29.
20.
MacKenna
D. A.
,
Omens
J. H.
, and
Covell
J. W.
,
1996
, “
Left Ventricular Perimysial Collagen Fibers Uncoil Rather Than Stretch During Diastolic Filling
,”
Basic Res. Cardiol.
,
91
(
2
), pp.
111
122
.
21.
Dokos
S.
,
Smaill
B. H.
,
Young
A. A.
, and
LeGrice
I. J.
,
2002
, “
Shear Properties of Passive Ventricular Myocardium
,”
Am. J. Physiol.
,
283
(
6
), pp.
2650
2659
.
22.
Dokos
S.
,
LeGrice
I. J.
,
Smaill
B. H.
,
Kar
J.
, and
Young
A. A.
,
2000
, “
A Triaxial-Measurement Shear-Test Device for Soft Biological Tissues
,”
J. Biomech.
,
122
(
5
), pp.
471
478
.
23.
Guccione
J. M.
,
McCulloch
A. D.
, and
Waldman
L. K.
,
1991
, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
,
113
, pp.
42
55
.
24.
Emery J. L., Omens J. H., and McCulloch A. D., 1997, “Biaxial Mechanics of the Passively Overstretched Left Ventricle,” Am. J. Physiol., pp. 2299–2305.
25.
Usyk
T. P.
,
Mazhari
R.
, and
McCulloch
A. D.
,
2000
, “
Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle
,”
J. Elast.
,
61
, pp.
143
164
.
26.
Usyk
T. P.
,
LeGrice
I. J.
, and
McCulloch
A. D.
,
2002
, “
Computational Model of Three-Dimensional Cardiac Electromechanics
,”
Comput. Visual Sci.
,
4
, pp.
249
257
.
27.
Hunter
P. J.
,
Smaill
B. H.
, and
Hunter
I. W.
,
1995
, “
A ‘Pole-Zero’ Constitutive Law for Myocardium
,”
ASME J. Biomech. Eng.
,
382
, pp.
303
18
.
28.
Demer
L. L.
, and
Yin
F. C. P.
,
1983
, “
Passive Biaxial Mechanical Properties of Isolated Canine Myocardium
,”
J. Physiol. (London)
,
339
, pp.
615
630
.
29.
Yin
F. C. P.
,
Strumpf
R. K.
,
Chew
P. H.
, and
Zeger
S. L.
,
1987
, “
Quantification of the Mechanical Properties of Noncontracting Canine Myocardium Under Simultaneous Biaxial Loading
,”
J. Biomech.
,
20
, pp.
577
589
.
30.
Humphrey
J. D.
,
Strumpf
R. K.
, and
Yin
F. C. P.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME J. Biomech. Eng.
,
112
, pp.
333
339
.
31.
Novak
V. P.
,
Yin
F. C. P.
, and
Humphrey
J. D.
,
1994
, “
Regional Mechanical Properties of Passive Myocardium
,”
J. Biomech.
,
27
(
4
), pp.
403
412
.
32.
Nevo
E.
, and
Lanir
Y.
,
1994
, “
The Effect of Residual Strain on the Diastolic Function of the Left Ventricle as Predicted by a Structural Model
,”
J. Biomech.
,
27
(
12
), pp.
1433
1446
.
33.
Costa
K. D.
,
May-Newman
K.
,
Farr
D.
,
O’Dell
W. G.
,
McCulloch
A. D.
, and
Omens
J. H.
,
1997
, “
Three-Dimensional Residual Strain in Midanterior Canine Left Ventricle
,”
Am. J. Physiol.
,
273
, pp.
H1968–H1976
H1968–H1976
.
34.
Omens
J. H.
,
McCulloch
A. D.
, and
Criscione
J. C.
,
2003
, “
Complex Distributions of Residual Stress and Strain in the Mouse Left Ventricle: Experimental and Theoretical Models
,”
Biomechan. Modeling Mechanobiolog
,
1
(
4
), pp.
267
277
.
35.
Rodriguez
E. K.
,
Hoger
A.
, and
McCulloch
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.
36.
Hill
A. V.
,
1938
, “
Time Heart of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London, Ser. B
,
126
, pp.
136
195
.
37.
Huxley
A. F.
,
1957
, “
Muscle Structure and Theories of Contraction
,”
Prog. Biophys. Biophys. Chem.
,
7
, pp.
255
318
.
38.
Wong
A. Y. K.
,
1972
, “
Mechanics of Cardiac Muscle Based on Huxley’s Model: Mathematical Simulation of Isometric Contraction
,”
J. Biomech.
,
4
, pp.
520
540
.
39.
To¨zeren
A.
,
1985
, “
Continuum Rheology of Muscle Contraction and Its Application to Cardiac Contractility
,”
Biophys. J.
,
47
, pp.
303
309
.
40.
Pinto
J. G.
,
1987
, “
A Constitutive Description of Contracting Papillary Muscle and Its Implications to the Dynamics of the Heart
,”
ASME J. Biomech. Eng.
,
109
, pp.
181
191
.
41.
ter Keurs
H. E. D. J.
,
Rijnsburger
W. H.
,
van Heuningen
R.
, and
Nagelsmit
M. J.
,
1980b
, “
Tension Development and Sarcomere Length in Rat Cardiac Trabeculae: Evidence of Length-Dependent Activation
,”
Circ. Res.
,
46
(
5
), pp.
703
714
.
42.
ter Keurs
H. E. D. J.
,
Rijnsburger
W. H.
, and
van Heuningen
R.
,
1980a
, “
Restoring Forces and Relaxation of Rat Cardiac Muscle
,”
Eur. Heart J.
,
1
, pp.
67
80
.
43.
Rice
J. J.
,
Jafri
M. S.
, and
Winslow
R. L.
,
2000
, “
Modeling Short-Term Interval-Force Relations in Cardiac Muscle
,”
Am. J. Physiol.
,
278
, pp.
H913–H931
H913–H931
.
44.
Hunter
P. J.
,
McCulloch
A. D.
, and
ter Keurs
H. E. D. J.
,
1998
, “
Modeling the Mechanical Properties of Cardiac Muscle
,”
Prog. Biophys. Mol. Biol.
,
69
, pp.
289
331
.
45.
Guz, A., Bergel, D. H., and Brutsaert, D. L., 1974, The Physiological Basis of Starling’s Law of the Heart, Elsevier, New York.
46.
Hill T. L., 1975, “Theoretical Formalism for the Sliding Filament Model of Contraction of Striated Muscle, Part II,” Prog. Biophys. Mol. Biol., pp. 105–159.
47.
Smith
D. A.
,
1998
, “
A Strain-Dependent Ratchet Model of [Phosphate]- and [ATP]-Dependent Muscle Contraction
,”
J. Muscle Res. Cell Motil.
,
19
, pp.
189
211
.
48.
Piazzesi
G.
, and
Lombardi
V.
,
1995
, “
A Cross-Bridge Model That is Able to Explain Mechanical and Energetic Properties of Shortening Muscle
,”
Biophys. J.
,
68
(
5
), pp.
1966
1979
.
49.
Zahalak
G. I.
,
1981
, “
A Distribution-Moment Approximation for Kinetic Theories of Muscular Contraction
,”
Math. Biosci.
,
55
, pp.
89
114
.
50.
Zahalak
G. I.
, and
Ma
S.-P.
,
1990
, “
Muscle Activation and Contraction: Constitutive Relations Based Directly on Cross-Bridge Kinetics
,”
ASME J. Biomech. Eng.
,
112
, pp.
52
62
.
51.
Guccione
J. M.
,
Motabarzadeh
I.
, and
Zahalak
G. I.
,
1998
, “
A Distribution-Moment Model of Deactivation in Cardiac Muscle
,”
J. Biomech.
,
31
(
11
), pp.
1069
73
.
52.
Bergel, D. A., and Hunter, P. J., 1979, “The Mechanics of the Heart,” edited by N. H. C. Hwang, D. R. Gross, and D. J. Patel, Quantitative Cardiovascular Studies, Clinical and Research Applications of Engineering Principles, University Park Press, Baltimore, Chap. 4, pp. 151–213.
53.
Hunter, P. J., 1995, “Myocardial Constitutive Laws for Continuum Mechanics Models of the Heart,” edited by S. Sideman and R. Beyar, Molecular and Subcellular Cardiology: Effects of Structure and Function, Plenum, New York, Chap. 30, pp. 303–318.
54.
Kawai
M.
, and
W
B. P.
,
1980
, “
Sinusoidal Analysis: A High-Resolution Method for Correlating Biochemical Reactions With Physiological Processes in Activated Skeletal Muscles of Rabbit, Frog, and Crayfish
,”
J. Muscle Res. Cell Motil.
,
3
, pp.
279
303
.
55.
Kawai
M.
,
Zhao
Y.
, and
Halvorson
H.
,
1993b
, “
Elementary Steps of Contraction Probed by Sinusoidal Analysis Technique in Rabbit Psoas Fibers
,”
Circ. Res.
,
332
, pp.
567
580
.
56.
Saeki
Y.
,
Kawai
M.
, and
Zhao
Y.
,
1991
, “
Comparison of Cross-Bridge Dynamics Between Intact and Skinned Myocardium From Ferret Right Ventricles
,”
Circ. Res.
,
68
(
3
), pp.
772
781
.
57.
Kawai
M.
,
Saeki
Y.
, and
Zhao
Y.
,
1993a
, “
Cross-Bridge Scheme and the Kinetic Constants of Elementary Steps Deduced From Chemically Skinned Papillary and Trabecular Muscles of the Ferret
,”
Circ. Res.
,
73
, pp.
35
50
.
58.
Hunter
P. J.
,
1974
, “
Development of a Mathematical Model of the Left Ventricle
,”
J. Physiol. (London)
,
241
, pp.
87
88
.
59.
Hunter
P. J.
, and
Smaill
B. H.
,
1988
, “
The Analysis of Cardiac Function: A Continuum Approach
,”
Prog. Biophys. Mol. Biol.
,
52
, pp.
101
164
.
60.
Hunter, P. J., McCulloch, A. D., Nielsen, P. M. F., and Smaill, B. H., 1988, “A Finite Element Model of Passive Ventricular Mechanics,” edited by R. L. Spilker and B. R. Simon, Computational Methods in Bioengineering, ASME, BED, New York, Chap. 9, pp. 387–397.
61.
Hunter, P. J., Nash, M. P., and Sands, G. B., 1997, “Computational Electromechanics of the Heart,” edited by A. V. Panfilov and A. V. Holden, Computational Biology of the Heart, Wiley, West Sussex, England, Chap. 12, pp. 345–407.
62.
Atkin, R. J., and Fox, N., 1980, An Introduction to the Theory of Elasticity, Longman, London.
63.
Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium, Prentice–Hall, Englewood Cliffs, New Jersey.
64.
Zienkiewicz, O. C., and Taylor, R. L., 1994, The Finite Element Method. I. Basic Formulation and Linear Problems, McGraw–Hill, fourth edition, Berkshire, UK.
65.
Oden, J. T., 1972, Finite Elements of Nonlinear Continua, McGraw–Hill, New York.
66.
Bovendeerd
P. H.
,
Arts
T.
,
Delhaas
T.
,
Huyghe
J. M.
,
van Campen
D. H.
, and
RS
R. S. R.
,
1996
, “
Regional Wall Mechanics in the Ischemic Left Ventricle: Numerical Modeling and Dog Experiments
,”
Am. J. Physiol.
,
270
(
1
),
398
410
.
67.
Mazhari
R.
, and
McCulloch
A. D.
,
2000
, “
Integrative Models for Understanding the Structural Basis of Regional Mechanical Dysfunction in Ischemic Myocardium
,”
Ann. Biomed. Eng.
,
28
(
8
), pp.
979
990
.
68.
Mazhari
R.
,
Omens
J. H.
,
Waldman
L. K.
, and
McCulloch
A. D.
,
1998
, “
Regional Myocardial Perfusion and Mechanics: A Model-Based Method of Analysis
,”
Ann. Biomed. Eng.
,
26
(
5
), pp.
743
755
.
69.
Mazhari
R.
,
Covell
J. H. O. J. W.
, and
McCulloch
A. D.
,
2000
, “
Structural Basis of Regional Dysfunction in Acutely Ischemic Myocardium
,”
Cardiovasc. Res.
,
47
(
2
), pp.
284
293
.
70.
Smith
N. P.
,
Pullan
A. J.
, and
Hunter
P. J.
,
2002
, “
An Efficient Finite Difference Model of Transient Coronary Blood Flow in the Heart
,”
SIAM J. Appl. Math.
,
62
, pp.
990
1018
.
71.
Ch’en
F. F. T.
,
Vaughan-Jones
R. D.
,
Clark
K.
, and
Noble
D.
,
1998
, “
Modeling Myocardial Ischaemia and Reperfusion
,”
Prog. Biophys. Mol. Biol.
,
69
, pp.
497
515
.
72.
Mulquiney
P. J.
, and
Kuchel
P. W.
,
1997
, “
Model of the ph Dependence of the Concentrations of Complexes Involving Metabolites, Haemoglobin, and Magnesium Ions in the Human Erythrocyte
,”
Eur. J. Biochem.
,
245
(
1
), pp.
71
83
.
73.
Bassingthwaighte, J. B., Liebovitch, L. S., and West, B. J., 1994, Fractal Physiology, Oxford University Press, Oxford, U.K.
74.
Wang
C. Y.
,
Bassingthwaighte
J. B.
, and
Weissman
L. J.
,
1992
, “
Bifurcating Distributive System Using Monte Carlo Method
,”
Math. Comput. Modell.
,
16
(
3
), pp.
91
98
.
75.
Beard
D. A.
, and
Bassingthwaighte
J. B.
,
2000
, “
The Fractal Nature of Myocardial Blood Flow Emerges From a Whole-Organ Model of Arterial Network
,”
J. Vasc. Res.
,
37
, pp.
282
296
.
76.
Kassab
G. S.
,
Rider
C. A.
,
Tang
N. J.
, and
Fung
Y. C.
,
1993
, “
Morphometry of Pig Coronary Arterial Trees
,”
Am. J. Physiol.
,
265
, pp.
H350–H365
H350–H365
.
77.
Kassab
G. S.
,
Rider
C. A.
,
Tang
N. J.
, and
Fung
Y. C.
,
1994b
, “
Topology and Dimensions of Pig Coronary Capillary Network
,”
Am. J. Physiol.
,
267
, pp.
H319–H325
H319–H325
.
78.
Kassab
G. S.
,
Lin
D. H.
, and
Fung
Y. C.
,
1994a
, “
Morphometry of Pig Coronary Venous System
,”
Am. J. Physiol.
,
267
, pp.
H2100–H2113
H2100–H2113
.
79.
Kassab
G. S.
,
Berkley
J.
, and
Fung
Y. C.
,
1997
, “
Analysis of Pig’s Coronary Arterial Blood Flow With Detailed Anatomical Data
,”
Ann. Biomed. Eng.
,
25
, pp.
204
217
.
80.
Smith
N. P.
,
Pullan
A. J.
, and
Hunter
P. J.
,
2000
, “
The Generation of an Anatomically Accurate Geometric Coronary Model
,”
Ann. Biomed. Eng.
,
28
, pp.
14
25
.
81.
Downey
J. M.
, and
Kirk
E. S.
,
1975
, “
Inhibition of Coronary Blood Flow by a Vascular Waterfall Mechanism
,”
Circ. Res.
,
36
, pp.
753
760
.
82.
Spaan
J. A. E.
,
Breuls
N. P. W.
, and
Laird
J. D.
,
1981
, “
Diastolic-Systolic Coronary Flow Differences are Caused by Intramyocardial Pump Action in the Anesthetised Dog
,”
Circ. Res.
,
49
, pp.
584
593
.
83.
Krams
R.
,
Sipkema
P.
, and
Westerhof
N.
,
1989
, “
Varying Elastance Concept May Explain Coronary Systolic Flow Impediment
,”
Am. J. Physiol.
,
257
, pp.
H1471–H1479
H1471–H1479
.
84.
Vis
M. A.
,
Sipkema
P.
, and
Westerhof
N.
,
1997b
, “
Modeling Pressure-Flow Relations in Cardiac Muscle in Diastole and Systole
,”
Am. J. Physiol.
,
272
, pp.
H1516–H1526
H1516–H1526
.
85.
Vis
M. A.
,
Bovendeerd
P. H.
,
Sipkema
P.
, and
Westerhof
N.
,
1997a
, “
Effect of Ventricular Contraction, Pressure, and Wall Stretch on Vessels at Different Locations in the Wall
,”
Am. J. Physiol.
,
272
, pp.
H2963–H2975
H2963–H2975
.
86.
Huyghe
J. M.
,
Arts
T.
,
van Campen
D. H.
, and
Reneman
R. S.
,
1992
, “
Porous Medium Finite Element Model of the Beating Left Ventricle
,”
Am. J. Physiol.
,
262
(
31
), pp.
H1256–H1267
H1256–H1267
.
87.
Spencer, A. J. M., 1980, Continuum Mechanics, Longman, London.
88.
May-Newman
K.
,
Omens
J. H.
,
Pavelec
R. S.
, and
McCulloch
A. D.
,
1994
, “
Three-Dimensional Transmural Mechanical Interaction Between the Coronary Vasculature and Passive Myocardium in the Dog
,”
Circ. Res.
,
74
(
6
), pp.
1166
1166
.
89.
McCulloch
A. D.
,
Hunter
P. J.
, and
Smaill
B. H.
,
1992
, “
Mechanical Effects of Coronary Perfusion in the Passive Canine Left Ventricle
,”
Am. J. Physiol.
,
262
(
31
), pp.
H523–H530
H523–H530
.
90.
Nash, M. P., Sands, G. B., Bullivant, D. P., and Hunter, P. J., 1996, “Modeling the Electromechanics of the Heart,” Electrocardiology ’96: From the Cell to the Body Surface. Procs. of the XXIII Intl. Congr. on Electrocardiology.
91.
Nichols, W. W., and O’Rourke, M. F., 1990, McDonalds Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles, third edition, Hodder and Stoughton, London, Chap. 4, pp. 85–87.
92.
Bassingthwaighte
J. B.
,
King
R. B.
, and
Roger
S. A.
,
1989
, “
Fractal Nature of Regional Myocardial Blood Flow Heterogeneity
,”
Circ. Res.
,
65
, pp.
578
590
.
93.
Eisenberg
E.
,
Hill
T. L.
, and
Chen
Y. D.
,
1980
, “
Cross-Bridges Model of Muscle Contraction: Quantitative Analysis
,”
Biophys. J.
,
29
, pp.
195
227
.
94.
Smith
D. A.
,
1990
, “
The Theory of Sliding Filament Models for Muscle Contraction III: Dynamics of the Five-State Model
,”
J. Theor. Biol.
,
146
, pp.
433
466
.
95.
Salem
J. E.
,
Saidel
G. M.
,
Stanley
W. C.
, and
Cabrera
M. E.
,
2002
, “
Mechanistic Model of Myocardial Energy Metabolism Under Normal and Ischemic Conditions
,”
Ann. Biomed. Eng.
,
30
(
2
), pp.
202
216
.
96.
Yi
C. S.
,
Fogelson
A. L.
,
Keener
J. P.
, and
Peskin
C. S.
,
2003
, “
A Mathematical Study of Volume Shifts and Ionic Concentration Changes During Ischemia and Hypoxia
,”
J. Theor. Biol.
,
220
(
1
), pp.
83
106
.
97.
Muller
J. M.
,
Davis
M. J.
, and
Chilian
W. M.
,
1996
, “
Integrated Regulation of Pressure and Flow in the Coronary Microcirculation
,”
Circ. Res.
,
32
(
4
), pp.
668
678
.
98.
Xu, X. Y., and Collins, M. W., 1999, Haemodynamics of Arterial Organs—Comparison of Computational Predictions With In Vitro and in Vivo Data, WIT Press, Southhampton, UK.
99.
Verdonck, P., and Perktold, K., 2000, Intra and Extracorporeal Cardiovascular Fluid Dynamics, WIT Press, Southampton, UK, Vols. I and II.
100.
McQueen
,
D. M.
, and
Peskin
,
C. S.
2000
, “
A Three-Dimensional Computer Model of the Human Heart for Studying Cardiac Fluid Dynamics
,”
Comput. Graph
34
, pp.
56
60
.
101.
Hughes
,
T. J. R.
and
Zimmerman
,
W. K. L. T. K.
,
1981
, “
Lagrangian-Eulerian Finte Element Formulation for Incompressible Viscous Flows
,”
Comput. Meth. Appl. Mechs. Eng.
,
29
, pp.
329
349
.
102.
May-Newman
,
K.
and
McCulloch
,
A. D.
,
1998
, “
Homogenization Modeling for the Mechanics of Perfused Myocardium
,”
Prog. Biophys. Molec. Biol.
,
69
, pp.
463
481
.
103.
Yang
,
M.
,
Taber
,
L.
, and
Clark
,
E.
,
1994
, “
A Nonlinear Poroelastic Model for the Trabecular Embryonic Heart
,”
ASME J. Biomed. Eng.
,
116
, pp.
213
223
.
104.
Nickerson
,
D. P.
,
Smith
,
P.
, and
Hunter
,
P. J.
,
2001
, “
A Model of Cardiac Cellular Electromechanics
,”
Philos. Trans. R. Soc. London
,
359
, pp.
1159
1172
.
105.
Smith
,
N. P.
,
Mulquiney
,
P. J.
,
Nash
,
M. P.
,
Bradley
,
C. P.
,
Nickerson
,
D. P.
, and
Hunter
,
P. J.
,
2001
, “
Mathematical Modeling of the Heart: Cell to Organ
,”
Chaos, Soluctions Fractals
,
13 pp.
1613
1621
.
106.
Sands, G. B., and Hunter, P. J., 1996, “A Collocation-Multigrid Model of Bidomain Activation as a Component of a Complete Electrocardiology Model,” 23rd International Conference on Electrocardiography, Cleveland, OH.
107.
Briggs, W. L., 1987, A Multigrid Tutorial, Society for Industrial and Applied Mathematics, Philadelphia, PA.
You do not currently have access to this content.