Abstract

Stoney formula is widely used in advanced devices to estimate the residual stress of thin film/substrate system by measuring surface curvature. Many hypotheses including that thin film thickness is ignored are required, thus bringing significant error in characterizing the inhomogeneous residual stress distribution. In this article, arbitrary residual stresses on thin film/substrate structures with nonnegligible film thickness are modeled and characterized. We introduce nonuniform misfit strain and establish the governing equations including mismatched strain, displacements, and interfacial stresses based on the basic elastic theory. The parameterization method and the method of constant variation are used in the process of equation decoupling. The expressions between displacements, surface curvatures, and misfit strain are determined through decoupling calculations. By substituting misfit strain, residual stresses are expressed by parametric equation related to surface curvature. It further indicates that there is a “non-local” part between the film stress and curvature at the same point. Compared to neglecting the film thickness, the proposed method eliminate relative errors up to 58.3%, which is of great significance for stress measurement of thin films and substrates.

References

1.
Zhang
,
R.
,
Shilo
,
D.
,
Ravichandran
,
G.
, and
Bhattacharya
,
K.
,
2006
, “
Mechanical Characterization of Released Thin Films by Contact Loading
,”
ASME J. Appl. Mech.
,
73
(
5
), pp.
730
736
.
2.
Goldberg
,
N. N.
, and
O’Reilly
,
O. M.
,
2022
, “
Electrostatically Actuated Mems in the Post-Touchdown Regime: The Thin-Dielectric Limit and a Novel Reduced-Order Model for Release Dynamics
,”
Int. J. Solids. Struct.
,
252
, p.
111812
.
3.
Yu
,
B.
,
Lun
,
Y.
,
Hou
,
Z.
, and
Hong
,
J.
,
2023
, “
Architected Piezoelectric Metamaterial With Designable Full Nonzero Piezoelectric Coefficients
,”
ASME J. Appl. Mech.
,
90
(
8
), p.
081006
.
4.
Dahl-Hansen
,
R. P.
,
Tyholdt
,
F.
,
Gjessing
,
J.
,
Vogl
,
A.
,
Wittendorp
,
P.
,
Vedum
,
J.
, and
Tybell
,
T.
,
2020
, “
On the Effect of Water-Induced Degradation of Thin-Film Piezoelectric Microelectromechanical Systems
,”
J. Microelectromech. S.
,
30
(
1
), pp.
105
115
.
5.
Dai
,
Y.
,
Hu
,
H.
,
Wang
,
M.
,
Xu
,
J.
, and
Wang
,
S.
,
2021
, “
Stretchable Transistors and Functional Circuits for Human-Integrated Electronics
,”
Nat. Electron.
,
4
(
1
), pp.
17
29
.
6.
Cen
,
J.
, and
Komvopoulos
,
K.
,
2023
, “
A Cohesive-Zone-Based Contact Mechanics Analysis of Delamination in Homogeneous and Layered Half-Spaces Subjected to Normal and Shear Surface Tractions
,”
ASME J. Appl. Mech.
,
90
(
7
), p.
071011
.
7.
Qi
,
D.
,
Zhang
,
K.
,
Tian
,
G.
,
Jiang
,
B.
, and
Huang
,
Y.
,
2021
, “
Stretchable Electronics Based on Pdms Substrates
,”
Adv. Mater.
,
33
(
6
), p.
2003155
.
8.
Wang
,
Y.
,
Zhang
,
M.
,
Lai
,
Y.
, and
Chi
,
L.
,
2018
, “
Advanced Colloidal Lithography: From Patterning to Applications
,”
Nano Today
,
22
, pp.
36
61
.
9.
Tanaka
,
H.
,
Hidaka
,
T.
,
Izumi
,
S.
, and
Sakai
,
S.
,
2014
, “
Onset of Wiggling in a Microscopic Patterned Structure Induced by Intrinsic Stress During the Dry Etching Process
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091009
.
10.
Mojarad
,
N.
,
Gobrecht
,
J.
, and
Ekinci
,
Y.
,
2015
, “
Interference Lithography at Euv and Soft X-Ray Wavelengths: Principles, Methods, and Applications
,”
Microelectron. Eng.
,
143
, pp.
55
63
.
11.
Demkov
,
A. A.
,
Bajaj
,
C.
,
Ekerdt
,
J. G.
,
Palmstrøm
,
C. J.
, and
Ben Yoo
,
S.
,
2021
, “
Materials for Emergent Silicon-Integrated Optical Computing
,”
J. Appl. Phys.
,
130
(
7
), p.
070907
.
12.
Chang
,
L.
,
Liu
,
S.
, and
Bowers
,
J. E.
,
2022
, “
Integrated Optical Frequency Comb Technologies
,”
Nat. Photonics
,
16
(
2
), pp.
95
108
.
13.
Finot
,
M.
, and
Suresh
,
S.
,
1996
, “
Small and Large Deformation of Thick and Thin-Film Multi-layers: Effects of Layer Geometry, Plasticity and Compositional Gradients
,”
J. Mech. Phys. Solids.
,
44
(
5
), pp.
683
721
.
14.
Marthelot
,
J.
,
Roman
,
B.
,
Bico
,
J.
,
Teisseire
,
J.
,
Dalmas
,
D.
, and
Melo
,
F.
,
2014
, “
Self-replicating Cracks: A Collaborative Fracture Mode in Thin Films
,”
Phys. Rev. Lett.
,
113
(
8
), p.
085502
.
15.
Wang
,
J.
,
Sottos
,
N. R.
, and
Weaver
,
R. L.
,
2004
, “
Tensile and Mixed-Mode Strength of a Thin Film-Substrate Interface Under Laser Induced Pulse Loading
,”
J. Mech. Phys. Solids.
,
52
(
5
), pp.
999
1022
.
16.
Faou
,
J.-Y.
,
Parry
,
G.
,
Grachev
,
S.
, and
Barthel
,
E.
,
2015
, “
Telephone Cord Buckles—A Relation Between Wavelength and Adhesion
,”
J. Mech. Phys. Solids.
,
75
, pp.
93
103
.
17.
Yu
,
S.-J.
,
Li
,
S.-C.
,
Ni
,
Y.
, and
Zhou
,
H.
,
2017
, “
Size Dependent Morphologies of Brittle Silicon Nitride Thin Films With Combined Buckling and Cracking
,”
Acta Mater.
,
127
, pp.
220
229
.
18.
Guduru
,
P.
,
Chason
,
E.
, and
Freund
,
L.
,
2003
, “
Mechanics of Compressive Stress Evolution During Thin Film Growth
,”
J. Mech. Phys. Solids.
,
51
(
11–12
), pp.
2127
2148
.
19.
Nečas
,
D.
,
Ohlídal
,
I.
,
Franta
,
D.
,
Ohlídal
,
M.
,
Čudek
,
V.
, and
Vodák
,
J.
,
2014
, “
Measurement of Thickness Distribution, Optical Constants, and Roughness Parameters of Rough Nonuniform Znse Thin Films
,”
Appl. Optics
,
53
(
25
), pp.
5606
5614
.
20.
Dong
,
X.
,
Feng
,
X.
,
Hwang
,
K.-C.
,
Ma
,
S.
, and
Ma
,
Q.
,
2011
, “
Full-Field Measurement of Nonuniform Stresses of Thin Films at High Temperature
,”
Opt. Express
,
19
(
14
), pp.
13201
13208
.
21.
Brown
,
M.
,
Rosakis
,
A.
,
Feng
,
X.
,
Huang
,
Y.
, and
Üstündag
,
E.
,
2007
, “
Thin Film/Substrate Systems Featuring Arbitrary Film Thickness and Misfit Strain Distributions. Part II: Experimental Validation of the Non-local Stress/Curvature Relations
,”
Int. J. Solids. Struct.
,
44
(
6
), pp.
1755
1767
.
22.
Narayanachari
,
K.
,
Chandrasekar
,
H.
,
Banerjee
,
A.
,
Varma
,
K.
,
Ranjan
,
R.
,
Bhat
,
N.
, and
Raghavan
,
S.
,
2016
, “
Growth Stress Induced Tunability of Dielectric Permittivity in Thin Films
,”
J. Appl. Phys.
,
119
(
1
), p.
014106
.
23.
Lee
,
M. L.
,
Fitzgerald
,
E. A.
,
Bulsara
,
M. T.
,
Currie
,
M. T.
, and
Lochtefeld
,
A.
,
2005
, “
Strained Si, Sige, and Ge Channels for High-Mobility Metal-Oxide-Semiconductor Field-Effect Transistors
,”
J. Appl. Phys.
,
97
(
1
), p.
011101
.
24.
Abadias
,
G.
, and
Daniel
,
R.
,
2021
,
Handbook of Modern Coating Technologies
,
Elsevier
,
Amsterdam, Netherlands
, pp.
359
436
.
25.
Korsunsky
,
A. M.
,
Sebastiani
,
M.
, and
Bemporad
,
E.
,
2010
, “
Residual Stress Evaluation at the Micrometer Scale: Analysis of Thin Coatings by FIB Milling and Digital Image Correlation
,”
Surf. Coat. Tech.
,
205
(
7
), pp.
2393
2403
.
26.
Rosakis
,
A.
,
Singh
,
R.
,
Tsuji
,
Y.
,
Kolawa
,
E.
, and
Moore
,
N., Jr.
,
1998
, “
Full Field Measurements of Curvature Using Coherent Gradient Sensing: Application to Thin Film Characterization
,”
Thin. Solid. Films.
,
325
(
1–2
), pp.
42
54
.
27.
Besnard
,
A.
,
Ardigo
,
M.-R.
,
Imhoff
,
L.
, and
Jacquet
,
P.
,
2019
, “
Curvature Radius Measurement by Optical Profiler and Determination of the Residual Stress in Thin Films
,”
Appl. Surf. Sci.
,
487
, pp.
356
361
.
28.
Qiao
,
G.
,
Hu
,
H.
,
Zhang
,
X.
,
Luo
,
X.
,
Xue
,
D.
,
Zhang
,
G.
,
Hu
,
H.
,
Yi
,
L.
,
Yang
,
Y.
, and
Deng
,
W.
,
2021
, “
Stress-Induced Deformation of the Coating on Large Lightweight Freeform Optics
,”
Opt. Express
,
29
(
4
), pp.
4755
4769
.
29.
Zhao
,
P.
,
Ouyang
,
X.
,
Yu
,
J.
,
Xu
,
H.
,
Wang
,
S.
, and
Li
,
F.
,
2021
, “
Measurement of Residual Stress in Yba 2 Cu 3 O 7- X Thin Films by Raman Spectroscopy
,”
J. Low Temp. Phys.
,
202
, pp.
382
396
.
30.
Kim
,
C.
, and
Hong
,
S.
,
2019
, “
Band Gap Shift of Cu2ZnSnS4 Thin Film by Residual Stress
,”
J. Alloy. Compd.
,
799
, pp.
247
255
.
31.
Schoderböck
,
P.
, and
Köstenbauer
,
H.
,
2021
, “
Residual Stress Determination in Thin Films by X-ray Diffraction and the Widespread Analytical Practice Applying a Biaxial Stress Model: An Outdated Oversimplification?
,”
Appl. Surf. Sci.
,
541
, p.
148531
.
32.
Kainbayev
,
N.
,
Sriubas
,
M.
,
Bockute
,
K.
,
Virbukas
,
D.
, and
Laukaitis
,
G.
,
2020
, “
E-beam Deposition of Scandia-Stabilized Zirconia (ScSZ) Thin Films Co-doped with Al
,”
Coatings
,
10
(
9
), p.
870
.
33.
Kim
,
H.
,
Choi
,
J.-H.
,
Park
,
Y.
,
Choi
,
S.
, and
Sim
,
G.-D.
,
2023
, “
Mechanical Characterization of Thin Films Via Constant Strain Rate Membrane Deflection Experiments
,”
J. Mech. Phys. Solids.
,
173
, p.
105209
.
34.
Freund
,
L. B.
, and
Suresh
,
S.
,
2004
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University Press
,
Cambridge, UK
.
35.
Freund
,
L.
,
2000
, “
Substrate Curvature Due to Thin Film Mismatch Strain in the Nonlinear Deformation Range
,”
J. Mech. Phys. Solids.
,
48
(
6–7
), pp.
1159
1174
.
36.
Nix
,
W. D.
,
1989
, “
Mechanical Properties of Thin Films
,”
Metall. Trans. A
,
20
, pp.
2217
2245
.
37.
Injeti
,
S. S.
, and
Annabattula
,
R. K.
,
2016
, “
Extending Stoney’s Equation to Thin, Elastically Anisotropic Substrates and Bilayer Films
,”
Thin. Solid. Films.
,
598
, pp.
252
259
.
38.
Park
,
T.-S.
, and
Suresh
,
S.
,
2000
, “
Effects of Line and Passivation Geometry on Curvature Evolution During Processing and Thermal Cycling in Copper Interconnect Lines
,”
Acta Mater.
,
48
(
12
), pp.
3169
3175
.
39.
Wen
,
J.
,
Wei
,
Y.
, and
Cheng
,
Y.-T.
,
2018
, “
Stress Evolution in Elastic-Plastic Electrodes During Electrochemical Processes: A Numerical Method and Its Applications
,”
J. Mech. Phys. Solids.
,
116
, pp.
403
415
.
40.
Huang
,
Y.
,
Ngo
,
D.
, and
Rosakis
,
A.
,
2005
, “
Non-uniform, Axisymmetric Misfit Strain: In Thin Films Bonded on Plate Substrates/Substrate Systems: The Relation Between Non-uniform Film Stresses and System Curvatures
,”
Acta Mech. Sinica-prc
,
21
, pp.
362
370
.
41.
Huang
,
Y.
, and
Rosakis
,
A.
,
2005
, “
Extension of Stoney’s Formula to Non-uniform Temperature Distributions in Thin Film/Substrate Systems. The Case of Radial Symmetry
,”
J. Mech. Phys. Solids.
,
53
(
11
), pp.
2483
2500
.
42.
Ngo
,
D.
,
Huang
,
Y.
,
Rosakis
,
A.
, and
Feng
,
X.
,
2006
, “
Spatially Non-uniform, Isotropic Misfit Strain in Thin Films Bonded on Plate Substrates: The Relation Between Non-uniform Film Stresses and System Curvatures
,”
Thin. Solid. Films.
,
515
(
4
), pp.
2220
2229
.
43.
Ngo
,
D.
,
Feng
,
X.
,
Huang
,
Y.
,
Rosakis
,
A.
, and
Brown
,
M.
,
2007
, “
Thin Film/Substrate Systems Featuring Arbitrary Film Thickness and Misfit Strain Distributions. Part I: Analysis for Obtaining Film Stress From Non-local Curvature Information
,”
Int. J. Solids. Struct.
,
44
(
6
), pp.
1745
1754
.
44.
Brown
,
M. A.
,
Park
,
T. -S.
,
Rosakis
,
A.
,
Ustundag
,
E.
,
Huang
,
Y.
,
Tamura
,
N.
, and
Valek
,
B.
,
2006
, “
A Comparison of X-ray Microdiffraction and Coherent Gradient Sensing in Measuring Discontinuous Curvatures in Thin Film: Substrate Systems
,”
ASME J. Appl. Mech.
, 73(5), pp.
723
729
.
45.
Mézin
,
A.
,
2006
, “
Coating internal Stress Measurement Through the Curvature Method: A Geometry-Based Criterion Delimiting the Relevance of Stoney’s Formula
,”
Surf. Coat. Tech.
,
200
(
18–19
), pp.
5259
5267
.
46.
Freund
,
L.
,
Floro
,
J.
, and
Chason
,
E.
,
1999
, “
Extensions of the Stoney Formula for Substrate Curvature to Configurations With Thin Substrates or Large Deformations
,”
Appl. Phys. Lett.
,
74
(
14
), pp.
1987
1989
.
You do not currently have access to this content.