Abstract

Magneto-mechanical metamaterials possess unique and tunable properties by adjusting their shape configurations in response to an external magnetic field. Their designs and functionalities are diverse and are utilized in a wide variety of applications, such as highly tunable elastic and electromagnetic wave filters and targeted shape morphing. In this perspective, we examine the general background of magneto-mechanical metamaterials and their diverse applications. The possible future directions in the field are also thoroughly discussed.

References

1.
Sim
,
J.
,
Wu
,
S.
,
Dai
,
J.
, and
Zhao
,
R. R.
,
2023
, “
Magneto-Mechanical Bilayer Metamaterial With Global Area-Preserving Density Tunability for Acoustic Wave Regulation
,”
Adv. Mater.
,
35
(
35
), p.
202303541
.
2.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
3.
Jiralerspong
,
T.
,
Bae
,
G.
,
Lee
,
J. H.
, and
Kim
,
S. K.
,
2020
, “
Wireless Control of Two- and Three-Dimensional Actuations of Kirigami Patterns Composed of Magnetic-Particles-Polymer Composites
,”
ACS Nano
,
14
(
12
), pp.
17589
17596
.
4.
Gu
,
H.
,
Boehler
,
Q.
,
Ahmed
,
D.
, and
Nelson
,
B. J.
,
2019
, “
Magnetic Quadrupole Assemblies With Arbitrary Shapes and Magnetizations
,”
Sci. Rob.
,
4
(
35
), pp.
1
8
.
5.
Zou
,
B.
,
Liang
,
Z.
,
Zhong
,
D.
,
Cui
,
Z.
,
Xiao
,
K.
,
Shao
,
S.
, and
Ju
,
J.
,
2023
, “
Magneto-Thermomechanically Reprogrammable Mechanical Metamaterials
,”
Adv. Mater.
,
35
(
8
), p.
2207349
.
6.
Qi
,
J.
,
Chen
,
Z.
,
Jiang
,
P.
,
Hu
,
W.
,
Wang
,
Y.
,
Zhao
,
Z.
,
Cao
,
X.
, et al
,
2022
, “
Recent Progress in Active Mechanical Metamaterials and Construction Principles
,”
Adv. Sci.
,
9
(
1
), p.
2120662
.
7.
Wu
,
S.
,
Eichenberger
,
J.
,
Dai
,
J.
,
Chang
,
Y.
,
Ghalichechian
,
N.
, and
Zhao
,
R. R.
,
2022
, “
Magnetically Actuated Reconfigurable Metamaterials as Conformal Electromagnetic Filters
,”
Adv. Intell. Syst.
,
4
(
9
), p.
2200106
.
8.
Dudek
,
K. K.
,
Iglesias Martínez
,
J. A.
,
Ulliac
,
G.
,
Hirsinger
,
L.
,
Wang
,
L.
,
Laude
,
V.
, and
Kadic
,
M.
,
2023
, “
Micro-Scale Mechanical Metamaterial With a Controllable Transition in the Poisson’s Ratio and Band Gap Formation
,”
Adv. Mater.
,
35
(
20
), p.
2210993
.
9.
Zhang
,
Q.
,
Cherkasov
,
A. V.
,
Xie
,
C.
,
Arora
,
N.
, and
Rudykh
,
S.
,
2023
, “
Nonlinear Elastic Vector Solitons in Hard-Magnetic Soft Mechanical Metamaterials
,”
Int. J. Solids Struct.
,
280
, p.
112396
.
10.
Montgomery
,
S. M.
,
Wu
,
S.
,
Kuang
,
X.
,
Armstrong
,
C. D.
,
Zemelka
,
C.
,
Ze
,
Q.
,
Zhang
,
R.
,
Zhao
,
R.
, and
Qi
,
H. J.
,
2021
, “
Magneto-Mechanical Metamaterials With Widely Tunable Mechanical Properties and Acoustic Bandgaps
,”
Adv. Funct. Mater.
,
31
(
3
), pp.
1
10
.
11.
Pierce
,
C. D.
,
Willey
,
C. L.
,
Chen
,
V. W.
,
Hardin
,
J. O.
,
Berrigan
,
J. D.
,
Juhl
,
A. T.
, and
Matlack
,
K. H.
,
2020
, “
Adaptive Elastic Metastructures From Magneto-Active Elastomers
,”
Smart Mater. Struct.
,
29
(
6
), p.
065004
.
12.
Xia
,
P.
,
Lai
,
Y.
, and
Liu
,
X.
,
2022
, “
Adjustable Magnetic-Control Design of a Metasurface for Sound Insulation
,”
Front. Mech. Eng.
,
7
, p.
116
.
13.
Zhao
,
J.
,
Li
,
X.
,
Wang
,
Y.
,
Wang
,
W.
,
Zhang
,
B.
, and
Gai
,
X.
,
2017
, “
Membrane Acoustic Metamaterial Absorbers With Magnetic Negative Stiffness
,”
J. Acoust. Soc. Am.
,
141
(
2
), pp.
840
846
.
14.
Galea
,
R.
,
Dudek
,
K. K.
,
Farrugia
,
P. S.
,
Zammit Mangion
,
L.
,
Grima
,
J. N.
, and
Gatt
,
R.
,
2022
, “
Reconfigurable Magneto-Mechanical Metamaterials Guided by Magnetic Fields
,”
Compos. Struct.
,
280
, p.
114921
.
15.
Ma
,
C.
,
Wu
,
S.
,
Ze
,
Q.
,
Kuang
,
X.
,
Zhang
,
R.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2021
, “
Magnetic Multimaterial Printing for Multimodal Shape Transformation With Tunable Properties and Shiftable Mechanical Behaviors
,”
ACS Appl. Mater. Interfaces
,
13
(
11
), pp.
12639
12648
.
16.
Xia
,
N.
,
Jin
,
D.
,
Pan
,
C.
,
Zhang
,
J.
,
Yang
,
Z.
,
Su
,
L.
,
Zhao
,
J.
,
Wang
,
L.
, and
Zhang
,
L.
,
2022
, “
Dynamic Morphological Transformations in Soft Architected Materials via Buckling Instability Encoded Heterogeneous Magnetization
,”
Nat. Commun.
,
13
(
1
), p.
7514
.
17.
Wu
,
S.
,
Ze
,
Q.
,
Zhang
,
R.
,
Hu
,
N.
,
Cheng
,
Y.
,
Yang
,
F.
, and
Zhao
,
R.
,
2019
, “
Symmetry-Breaking Actuation Mechanism for Soft Robotics and Active Metamaterials
,”
ACS Appl. Mater. Interfaces
,
11
(
44
), pp.
41649
41658
.
18.
Zhang
,
Q.
,
Cherkasov
,
A. V.
,
Arora
,
N.
,
Hu
,
G.
, and
Rudykh
,
S.
,
2023
, “
Magnetic Field-Induced Asymmetric Mechanical Metamaterials
,”
Extrem. Mech. Lett.
,
59
, p.
101957
.
19.
Lee
,
H.
,
Jang
,
Y.
,
Choe
,
J. K.
,
Lee
,
S.
,
Song
,
H.
,
Lee
,
J. P.
,
Lone
,
N.
, and
Kim
,
J.
,
2020
, “
3D-Printed Programmable Tensegrity for Soft Robotics
,”
Sci. Rob.
,
5
(
45
), pp.
1
12
.
20.
Wen
,
L.
,
Pan
,
F.
, and
Ding
,
X.
,
2020
, “
Tensegrity Metamaterials for Soft Robotics
,”
Sci. Rob.
,
5
(
45
), pp.
3
5
.
21.
Li
,
L.
,
Yao
,
H.
, and
Mi
,
S.
,
2023
, “
Magnetically Driven Modular Mechanical Metamaterials With High Programmability, Reconfigurability, and Multiple Applications
,”
ACS Appl. Mater. Interfaces
,
15
(
2
), pp.
3486
3496
.
22.
Roh
,
S.
,
Okello
,
L. B.
,
Golbasi
,
N.
,
Hankwitz
,
J. P.
,
Liu
,
J. A. C.
,
Tracy
,
J. B.
, and
Velev
,
O. D.
,
2019
, “
3D-Printed Silicone Soft Architectures With Programmed Magneto-Capillary Reconfiguration
,”
Adv. Mater. Technol.
,
4
(
4
), p.
1800528
.
23.
Jiang
,
S.
,
Liu
,
X.
,
Liu
,
J.
,
Ye
,
D.
,
Duan
,
Y.
,
Li
,
K.
,
Yin
,
Z.
, and
Huang
,
Y. A.
,
2022
, “
Flexible Metamaterial Electronics
,”
Adv. Mater.
,
34
(
52
), p.
2200070
.
24.
Chen
,
T.
,
2023
, “
Programming Material Logic Using Magnetically Controlled Bistability
,”
Proc. Natl. Acad. Sci. U. S. A.
,
120
(
17
), pp.
10
12
.
25.
Pal
,
A.
, and
Sitti
,
M.
,
2023
, “
Programmable Mechanical Devices Through Magnetically Tunable Bistable Elements
,”
Proc. Natl. Acad. Sci. U. S. A.
,
120
(
15
).
26.
Chen
,
T.
,
Pauly
,
M.
, and
Reis
,
P. M.
,
2021
, “
A Reprogrammable Mechanical Metamaterial With Stable Memory
,”
Nature
,
589
(
7842
), pp.
386
390
.
27.
Ze
,
Q.
,
Kuang
,
X.
,
Wu
,
S.
,
Wong
,
J.
,
Montgomery
,
S. M.
,
Zhang
,
R.
,
Kovitz
,
J. M.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Magnetic Shape Memory Polymers With Integrated Multifunctional Shape Manipulation
,”
Adv. Mater.
,
32
(
4
), pp.
1
8
.
28.
Schurig
,
D.
,
Mock
,
J. J.
,
Justice
,
B. J.
,
Cummer
,
S. A.
,
Pendry
,
J. B.
,
Starr
,
A. F.
, and
Smith
,
D. R.
,
2006
, “
Metamaterial Electromagnetic Cloak at Microwave Frequencies
,”
Science
,
314
(
5801
), pp.
977
980
.
29.
Wang
,
L.
,
Liu
,
Z.
,
Da
,
D.
,
Chan
,
Y. C.
,
Chen
,
W.
, and
Zhu
,
P.
,
2022
, “
Generalized De-Homogenization via Sawtooth-Function-Based Mapping and Its Demonstration on Data-Driven Frequency Response Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
395
, p.
114967
.
30.
Dudek
,
K. K.
,
Martínez
,
J. A. I.
,
Ulliac
,
G.
, and
Kadic
,
M.
,
2022
, “
Micro-Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing
,”
Adv. Mater.
,
34
(
14
).
31.
Montgomery
,
S. M.
,
Kuang
,
X.
,
Armstrong
,
C. D.
, and
Qi
,
H. J.
,
2020
, “
Recent Advances in Additive Manufacturing of Active Mechanical Metamaterials
,”
Curr. Opin. Solid State Mater. Sci.
,
24
(
5
).
32.
Tabrizi
,
M.
,
Ware
,
T. H.
, and
Shankar
,
M. R.
,
2019
, “
Voxelated Molecular Patterning in Three-Dimensional Freeforms
,”
ACS Appl. Mater. Interfaces
,
11
(
31
), pp.
28236
28245
.
33.
Ma
,
C.
,
Chang
,
Y.
,
Wu
,
S.
, and
Zhao
,
R. R.
,
2022
, “
Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials
,”
ACS Appl. Mater. Interfaces
,
14
(
29
), pp.
33982
33902
.
34.
Shinoda
,
H.
,
Azukizawa
,
S.
,
Maeda
,
K.
, and
Tsumori
,
F.
,
2019
, “
Bio-Mimic Motion of 3D-Printed Gel Structures Dispersed With Magnetic Particles
,”
J. Electrochem. Soc.
,
166
(
9
), pp.
B3235
B3239
.
35.
Cui
,
J.
,
Huang
,
T. Y.
,
Luo
,
Z.
,
Testa
,
P.
,
Gu
,
H.
,
Chen
,
X. Z.
,
Nelson
,
B. J.
, and
Heyderman
,
L. J.
,
2019
, “
Nanomagnetic Encoding of Shape-Morphing Micromachines
,”
Nature
,
575
(
7781
), pp.
164
168
.
36.
Zhao
,
Z.
, and
Zhang
,
X. S.
,
2023
, “
Encoding Reprogrammable Properties Into Magneto-Mechanical Materials via Topology Optimization
,”
npj Comput. Mater.
,
9
(
57
).
37.
Wu
,
S.
,
Hamel
,
C. M.
,
Ze
,
Q.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Evolutionary Algorithm-Guided Voxel-Encoding Printing of Functional Hard-Magnetic Soft Active Materials
,”
Adv. Intell. Syst.
,
2
(
8
), p.
2000060
.
38.
Wang
,
L.
,
Chang
,
Y.
,
Wu
,
S.
,
Renee
,
R.
, and
Chen
,
W.
,
2023
, “
Physics-Aware Differentiable Design of Magnetically Actuated Kirigami for Shape Morphing
,”
You do not currently have access to this content.