Abstract

The mechanics of detachment (e.g., a cylindrical fibril separating from a dissimilar substrate) has been treated in the perspectives of contact mechanics and fracture mechanics theory along with numerical simulations, but systematic experimental studies on the adhesion of an individual microfibril is still scarce. In this work, we conducted a detailed experiment on the adhesion tests of individual cylindrical microfibrils, within a large range of varying diameters from 4 to 400 μm, made of three different polyurethanes with moduli among ∼1–40 MPa. We confirmed the scaling effect of an individual microfibril, i.e., the adhesion σad of the individual fibril scales with fibrillar diameters D with an exponent of ∼ −0.4 to −0.45. As the fibrillar diameter is reduced below 10 μm, the adhesion becomes unchanged and size insensitive. This result is in good agreement with the theoretical predictions. Furthermore, the effects of the Young’s modulus and retraction rates during the adhesion tests on the adhesion strength were also investigated. Our experimental work will provide a guide for the optimal design of the micron-scale surfaces with improved adhesion.

References

1.
Arzt
,
E.
,
Quan
,
H.
,
McMeeking
,
R. M.
, and
Hensel
,
R.
,
2021
, “
Functional Surface Microstructures Inspired by Nature—From Adhesion and Wetting Principles to Sustainable New Devices
,”
Prog. Mater. Sci.
,
120
, p.
100823
.
2.
Arzt
,
E.
,
Gorb
,
S.
, and
Spolenak
,
R.
,
2003
, “
From Micro to Nano Contacts in Biological Attachment Devices
,”
Proc. Natl. Acad. Sci. USA
,
100
(
19
), pp.
10603
10606
.
3.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Ronald
,
F.
, and
Full
,
R. J.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
.
4.
Heepe
,
L.
, and
Gorb
,
S. N.
,
2014
, “
Biologically Inspired Mushroom-Shaped Adhesive Microstructures
,”
Annu. Rev. Mater. Res.
,
44
(
1
), pp.
173
203
.
5.
Gao
,
H.
,
Wang
,
X.
,
Yao
,
H.
,
Gorb
,
S.
, and
Arzt
,
E.
,
2005
, “
Mechanics of Hierarchical Adhesion Structures of Geckos
,”
Mech. Mater.
,
37
(
2
), pp.
275
285
.
6.
Zhang
,
X.
,
Wang
,
Y.
,
Hensel
,
R.
, and
Arzt
,
E.
,
2021
, “
A Design Strategy for Mushroom-Shaped Microfibrils With Optimized Dry Adhesion: Experiments and Finite Element Analyses
,”
ASME J. Appl. Mech.
,
88
(
3
), p.
031015
.
7.
Yao
,
H.
, and
Gao
,
H.
,
2006
, “
Optimal Shapes for Adhesive Binding Between Two Elastic Bodie
,”
J. Colloid Interface Sci.
,
298
(
2
), pp.
564
572
.
8.
Greiner
,
C.
,
Del Campo
,
A.
, and
Arzt
,
E.
,
2007
, “
Adhesion of Bioinspired Micropatterned Surfaces: Effects of Pillar Radius, Aspect Ratio, and Preload
,”
Langmuir
,
23
(
7
), pp.
3495
3502
.
9.
Tang
,
T.
,
Hui
,
C. Y.
, and
Glassmaker
,
N. J.
,
2005
, “
Can a Fibrillar Interface Be Stronger and Tougher Than a Non-Fibrillar One?
J. R. Soc. Interface
,
2
(
5
), pp.
505
516
.
10.
Hensel
,
R.
,
Moh
,
K.
, and
Arzt
,
E.
,
2018
, “
Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications
,”
Adv. Funct. Mater.
,
28
(
28
), p.
1800865
.
11.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. USA
,
100
(
10
), pp.
5597
5600
.
12.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
.
13.
Khaderi
,
S. N.
,
Fleck
,
N. A.
,
Arzt
,
E.
, and
McMeeking
,
R. M.
,
2015
, “
Detachment of an Adhered Micropillar From a Dissimilar Substrate
,”
J. Mech. Phys. Solids
,
75
, pp.
159
183
.
14.
Booth
,
J. A.
,
Tinnemann
,
V.
,
Hensel
,
R.
,
Arzt
,
E.
,
McMeeking
,
R. M.
, and
Foster
,
K. L.
,
2019
, “
Statistical Properties of Defect-Dependent Detachment Strength in Bioinspired Dry Adhesives
,”
J. R. Soc. Interface
,
16
(
156
), p.
20190239
.
15.
Hensel
,
R.
,
Thiemecke
,
J.
, and
Booth
,
J. A.
,
2021
, “
Preventing Catastrophic Failure of Microfibrillar Adhesives in Compliant Systems Based on Statistical Analysis of Adhesive Strength
,”
ACS Appl. Mater. Interfaces
,
13
(
16
), pp.
19422
19429
.
16.
Fleck
,
N. A.
,
Khaderi
,
S. N.
,
McMeeking
,
R. M.
, and
Arzt
,
E.
,
2017
, “
Cohesive Detachment of an Elastic Pillar From a Dissimilar Substrate
,”
J. Mech. Phys. Solids
,
101
, pp.
30
43
.
17.
Wang
,
Y.
,
Kang
,
V.
,
Arzt
,
E.
,
Federle
,
W.
, and
Hensel
,
R.
,
2019
, “
Strong Wet and Dry Adhesion by Cupped Microstructures
,”
ACS Appl. Mater. Interfaces
,
11
(
29
), pp.
26483
26490
.
18.
Maugis
,
D.
, and
Barquins
,
M.
,
1980
, “Fracture Mechanics and Adherence of Viscoelastic Solids,”
Adhesion and Adsorption of Polymers
,
L.-H.
Lee
, ed., Vol.
12
,
Springer
,
Boston, MA
, pp.
203
277
.
19.
Abusomwan
,
U.
, and
Sitti
,
M.
,
2012
, “
Effect of Retraction Speed on Adhesion of Elastomer Fibrillar Structures
,”
Appl. Phys. Lett.
,
101
(
21
), p.
211907
.
20.
Barnefske
,
L.
,
Rundel
,
F.
,
Moh
,
K.
,
Hensel
,
R.
,
Zhang
,
X.
, and
Arzt
,
E.
,
2022
, “
Tuning the Release Force of Microfibrillar Adhesives by Geometric Design
,”
Adv. Mater. Interfaces
,
9
(
33
), p.
2201232
.
21.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. Lond. A: Math. Phys. Sci.
,
324
(
1558
), pp.
301
313
.
22.
Kendall
,
K.
,
1971
, “
The Adhesion and Surface Energy of Elastic Solids
,”
J. Phys. D: Appl. Phys.
,
4
(
8
), p.
1186
1195
.
23.
Gao
,
H.
, and
Yao
,
H.
,
2004
, “
Shape Insensitive Optimal Adhesion of Nanoscale Fibrillar Structures
,”
Proc. Natl. Acad. Sci. USA
,
101
(
21
), pp.
7851
7856
.
You do not currently have access to this content.